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Market requires many robots in many environments

performing many tasks

Michael Beetz

ROS Industrial, November 2016

OPENEASE
3



The role of knowledge for robotics

Ginni Rometty (IBM):

• “Data is the world’s great new natural resource. What steam power was to
the 18th century, electromagnetism to the 19th and fossil fuels to the 20th¡
data will be to the 21st.”

Gill Pratt (Toyota Research Institute, Is a Cambrian Explosion Coming for Robotics?.
Journal of Economic Perspectives, Vol. 29, No. 3 (Summer 2015)):

• “Robots are already making large strides in their abilities, but as the
generalizable knowledge representation problem is addressed, the growth of
robot capabilities will begin in earnest, and it will likely be explosive.”

• “The key problems in robot capability yet to be solved are those of
generalizable knowledge representation and of cognition based on that
representation.”
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Why Is Knowledge so Important?

the cost of not knowing

• if the robot does not know about the task, the environment, the
robot the programmer has to hardcode everything

SpatialThing

...

Path-101

Mountain
Tree

Tree-42

Mountain-11

...

Environment
Path

...

Tree-32

House

House-52

...

Tree-32

• programming/instructing at an abstract/semantic level

– put the bolt into the nut and fasten it
– pour water into the glass
– . . .

Wikipedia:
Screw
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Challenge 1:
Closing knowledge gaps

Action description

pour the water out of the pot
(perform
(an action

(type pour)
(theme water)
(source pot)))

infer motion parameters and constraints
such as

• grasp the pot by the handles

• hold the pot horizontally

• tilt the pot around the axis between the
handles

• hold the lid while pouring

• etc
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Challenge 2:
Symbolic action descriptions cause different behavior

pouring plan

action description

(perform
(an action

(type adding)
(theme (some substance

(type milk)))
(destination

(some dough)))))
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Challenge 3:
Action success requires motion skills
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A generalized action plan for pouring

def-plan pour ( 〈theme〉 : (some stuff)

〈source〉 : (an object
(type container)
(contains 〈theme〉)
(affordance (an action

(type pick-up)
(body-part (a body-part (type hand))))

〈dest〉 : (a location))

begin

1. reach( 〈source〉) /* (includes grasp, pregrasp)
2. lift( 〈source〉) (a location (above 〈destination〉))
3. tilt( 〈source〉)

until (amount (some stuff (at 〈destination〉))
≥ (amount 〈theme〉)

end
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Generalized Cognition-enabled Motor Plan/Program

inspired by [Flanagan]
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ROBOPAL — a personal assistant for robots

• given: I want to pour water into the cup
• question: how should I grasp and hold the cup
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This is not science fiction!!!

look at Google Home, Amazon Echo, Siri, Viv, . . .
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ROBOPAL — a closer look

how should I grasp the cup?

?- current-task(Tsk),
task-exp(Tsk,

[an, action,
[type, pouring],
[destination, [an, object,

[type, container]]],
[support-action, Spt-Tsk]]),

task-exp(Spt-Tsk,
[an, action,

[type, grasping],
[subactions, Motions]]),

subaction([a, motion
[type, reaching],
[pregrasp-pose, PG-pose],
[grasp-pose, G-pose],
[grasp-force, G-force]],

Tsk),
show(PG-pose,G-pose,G-force).
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Knowledge needed for answering

rule base

• if a container is filled & open
then hold it upright

• if an object can break
then don’t squeeze too hard

• if the task context is pouring
then grasp close to the com

• if the task context is pouring
then don’t grasp mouth

rule base (ctd)

• choose motion parameters that are
predicted to succeed

• grasp an object such that you have
good visual feedback

• don’t get to close to breakable
objects
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Knowledge-enabled programming

fetch-and-place plan schema knowledge

def-plan pour (〈theme〉, 〈source〉 〈destination〉 )
1. take( 〈source〉)
2. hold( 〈source〉)

(a location
(above 〈destination〉))

3. tilt( 〈source〉)
until (amount (some stuff

(at 〈destination〉))
≥ (amount 〈theme〉)

end

• filled open containers must be held upright

• soft objects must not be squeezed beyond
their limits

• an open tetrapak is soft

• you have to tilt a pot around the axis
between the handles

• when tilting a container with an
unconnected lid then the lid might fall down

• objects with handles are conveniently held
by their handles

• objects that are to be picked up with two
hands must be reachable by both hands

• . . .
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Knowledge processing for robots

question answering
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Virtual knowledge bases
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Mirror world knowledge bases
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Knowledge acquisition and episodic memories
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Episodic memories

Episodic memory
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Learning                                                                           Observation
Knowledge
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- Experience

- Story, narrative

Motion control

Action: flavoring

Tool: type <spoon>, 

        percept <1493300024>

Theme: type <tomato sauce>

[...]

Motion: reach <tool>

Knowledge:

      pregrasp: <pose_FaMSjK> 

      grasp: power grasp

[...]

g
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Components of episodic memories

Images

Poses

t0 t1 t2 t3 t4 t5
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Components of episodic memories
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Components of episodic memories
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occurs(ev123,t2)
event-type(ev123,detect)
perception-task(ev123,obj-descr246)
object-description(obj-descr246, [an, object, ...])
perception-result(ev123,obj-descr345)
object-description(obj-descr345, [an, object, ...])
captured-image(ev123, img456)
image-region(obj-descr345, reg567)
. . .
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Semantic retrieval from episodic memories

?- task(Tsk),
task-action(Tsk, [an, action,

[type, pick-up],
[object-acted-on,

[an, object
[type, pot],
[weight, Weight]]]]),

Weight >= 2kg,
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Semantic retrieval from episodic memories

?- task(Tsk),
task-action(Tsk, [an, action,

[type, pick-up],
[object-acted-on,

[an, object
[type, pot],
[weight, Weight]]]]),

Weight >= 2kg,
task-start(Tsk,TskStrt),
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Semantic retrieval from episodic memories

?- task(Tsk),
task-action(Tsk, [an, action,

[type, pick-up],
[object-acted-on,

[an, object
[type, pot],
[weight, Weight]]]]),

Weight >= 2kg,
task-start(Tsk,TskStrt),
holds(pose(pr2,Pose),TskStrt).

Michael Beetz

ROS Industrial, November 2016

OPENEASE
30



Supervised learning from episodic memories

?-
task(Tsk),
task-action(Tsk, [an, action,

[type, pick-up],
[object-acted-on,

[an, object
[type, pot],
[weight, Weight]]]]),

Weight >= 2kg,
,

task-start(Tsk,TskStrt),
holds(pose(pr2,Pose),TskStrt),
.
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Supervised learning from episodic memories

?- setof(Pose,
task(Tsk),
task-action(Tsk, [an, action,

[type, pick-up],
[object-acted-on,

[an, object
[type, pot],
[weight, Weight]]]]),

Weight >= 2kg,
task-outcome(Tsk, success),
task-start(Tsk,TskStrt),
holds(pose(pr2,Pose),TskStrt),

Poses).
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Learning control concepts from longterm experience
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Cognition-enabled perception
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Final remarks

openease/scenario-components.png
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Final remarks (2)
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An Open Knowledge Service for Robotics
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OPENEASE: other tools

open research/innovation probabilistic reasoning

knowledge processing perception
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Thank you

for your attention
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Pepper at AI/Uni-Bremen

First integration during the final RoboHow review (EU project).
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Pepper at AI/Uni-Bremen (2)
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Pepper at AI/Uni-Bremen (3)

• Integration into the kitchen environment

• First attempts at localization using infrared markers (Optitrack tracking system),
but would like to replace it by on-board localization when available.

• Communication from the ROS-World using a bridge, to explain OpenEASE data
to participants
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