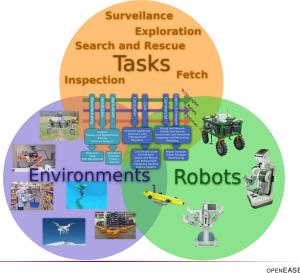

openEASE — A digital innovation platform for intelligent robotics

Michael Beetz, University of Bremen

ROS Industrial Conference, November 2016

Robotics Curve



Michael Beetz ROS Industrial, November 2016

2

Market requires many robots in many environments performing many tasks

Michael Beetz ROS Industrial, November 2016

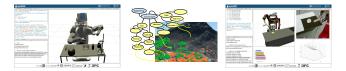
The role of knowledge for robotics

Ginni Rometty (IBM):

• "Data is the world's great new natural resource. What steam power was to the 18th century, electromagnetism to the 19th and fossil fuels to the 20th; data will be to the 21st."

Gill Pratt (Toyota Research Institute, *Is a Cambrian Explosion Coming for Robotics?*. Journal of Economic Perspectives, Vol. 29, No. 3 (Summer 2015)):

- "Robots are already making large strides in their abilities, but as the generalizable knowledge representation problem is addressed, the growth of robot capabilities will begin in earnest, and it will likely be explosive."
- "The key problems in robot capability yet to be solved are those of generalizable knowledge representation and of cognition based on that representation."



OPENEASE

Why Is Knowledge so Important?

the cost of not knowing

• if the robot does not know about the task, the environment, the robot the programmer has to hardcode everything

- programming/instructing at an abstract/semantic level
 - put the bolt into the nut and fasten it
 - pour water into the glass
 - ...

Wikipedia: Screw

Challenge 1:

Closing knowledge gaps

Action description

pour the water out of the pot (perform (an action (type pour) (theme water) (source pot)))

infer motion parameters and constraints such as

- grasp the pot by the handles
- hold the pot horizontally
- tilt the pot around the axis between the handles
- hold the lid while pouring
- etc

Challenge 2:

Symbolic action descriptions cause different behavior

pouring plan				
begin	ar ((theme) : (some stuff) (source) : (an object (type container) (contains (theme)) (affordance (an action (type pick-up) (body-part (a bo (dest) : (a location))			
1. 2. 3. <u>end</u>	$\begin{array}{ll} {\rm reach}({\rm (source)}) & /* ({\rm includes} {\rm grasp.} {\rm pregrasp}) \\ {\rm lift}({\rm (source)}) ({\rm a} {\rm location} ({\rm above} ({\rm destination}))) \\ {\rm until}({\rm source}) {\rm until} ({\rm amount} ({\rm some} {\rm stuff} ({\rm at} ({\rm destination}))) \\ & \geq ({\rm amount} ({\rm theme})) \end{array}$			

action description

(perform (an action (type adding) (theme (some substance (type milk))) (destination (some dough)))))

Challenge 3:

Action success requires motion skills

A generalized action plan for pouring

 def-plan
 pour (⟨theme⟩ : (some stuff)

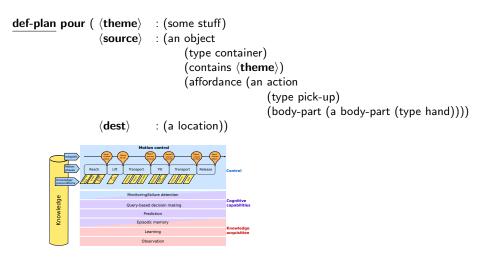
 ⟨source⟩ : (an object

 (type container)

 (contains ⟨theme⟩)

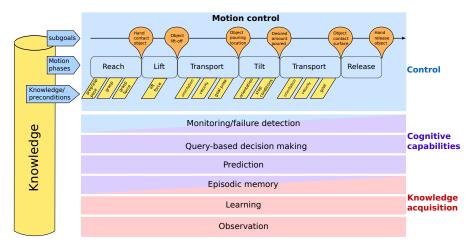
 (affordance (an action

 (type pick-up)


 (body-part (a body-part (type hand))))

begin

- 1. reach((source)) /* (includes grasp, pregrasp)
- 2. lift((source)) (a location (above (destination)))
- 3. tilt($\langle \text{source} \rangle$) <u>until</u> (amount (some stuff (at $\langle \text{destination} \rangle$)) \geq (amount $\langle \text{theme} \rangle$)


<u>end</u>

A generalized action plan for pouring

Generalized Cognition-enabled Motor Plan/Program

inspired by [Flanagan]

ROBOPAL — a personal assistant for robots

- given: I want to pour water into the cup
- question: how should I grasp and hold the cup

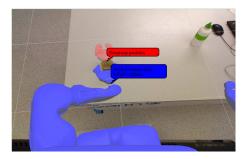
Michael Beetz ROS Industrial, November 2016

This is not science fiction!!!

look at Google Home, Amazon Echo, Siri, Viv, ...

ROBOPAL — a closer look

how should I grasp the cup?


```
?- current-task(Tsk),
   task-exp(Tsk,
            [an, action,
                 [type, pouring],
                 [destination, [an, object,
                                   [type, container]]],
                 [support-action, Spt-Tsk]]),
   task-exp(Spt-Tsk,
            [an, action,
                 [type, grasping],
                 [subactions, Motions]]),
  subaction([a, motion
                 [type, reaching],
                 pregrasp-pose, PG-pose],
                 [grasp-pose, G-pose],
                 [grasp-force, G-force]],
             Tsk).
  show(PG-pose,G-pose,G-force).
```


ROBOPAL — a closer look

how should I grasp the cup?

```
?- current-task(Tsk),
   task-exp(Tsk,
            [an, action,
                 [type, pouring],
                 [destination, [an, object,
                                   [type, container]]],
                 [support-action, Spt-Tsk]]),
   task-exp(Spt-Tsk,
            [an, action,
                 [type, grasping],
                 [subactions, Motions]]),
  subaction([a, motion
                 [type, reaching],
                 pregrasp-pose, PG-pose],
                 [grasp-pose, G-pose],
                 [grasp-force, G-force]],
             Tsk).
  show(PG-pose,G-pose,G-force).
```


Knowledge needed for answering

rule base

- if a container is filled & open then hold it upright
- if an object can break then don't squeeze too hard
- if the task context is pouring then grasp close to the com
- if the task context is pouring then don't grasp mouth

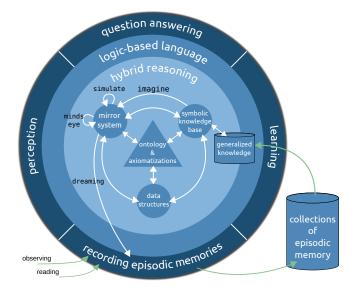
rule base (ctd)

- choose motion parameters that are predicted to succeed
- grasp an object such that you have good visual feedback
- don't get to close to breakable objects

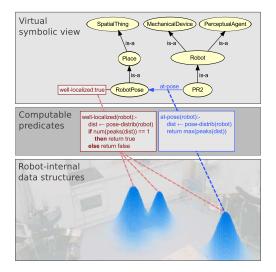
many motion constraints are semantic Knowledge needed for answering many apply in many stuartons steent relevant ones might be inconsistent many motion constraints are set many apply in many situations

rule base

- if a container is filled & op then hold it upright
- if an object can break then don't squeeze too hard
- if the task context is pouring then grasp close to the com
- if the task context is pouring then don't grasp mouth

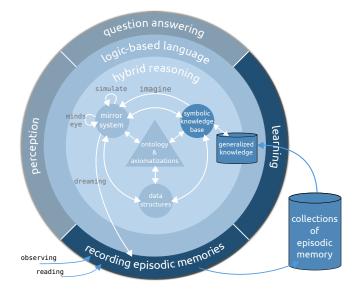

rule base (ctd)

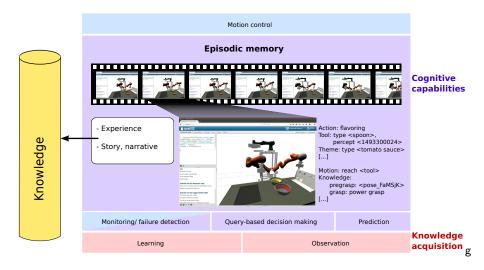
- choose motion parameters that are predicted to succeed
- grasp an object such that you have good visual feedback
- don't get to close to breakable objects

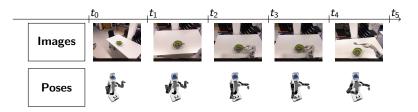

Knowledge-enabled programming

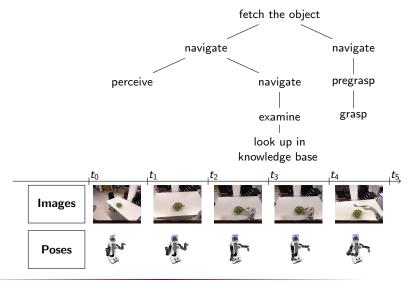
fetch-and-place plan schema	knowledge
$\begin{array}{c c} \underline{def\text{-plan}} \ \text{pour} \ (\langle theme \rangle, \langle source \rangle \ \langle destination \rangle \) \\ \hline 1. \ take(\langle source \rangle) \\ 2. \ hold(\langle source \rangle) \\ (a \ location \\ (above \ \langle destination \rangle)) \\ \hline 3. \ tilt(\ \langle source \rangle) \\ \underline{until} \ (amount \ (some \ stuff \\ (at \ \langle destination \rangle)) \\ \geq (amount \ \langle theme \rangle) \\ \underline{end} \end{array}$	 filled open containers must be held upright soft objects must not be squeezed beyond their limits an open tetrapak is soft you have to tilt a pot around the axis between the handles when tilting a container with an unconnected lid then the lid might fall down objects with handles are conveniently held by their handles objects that are to be picked up with two hands must be reachable by both hands

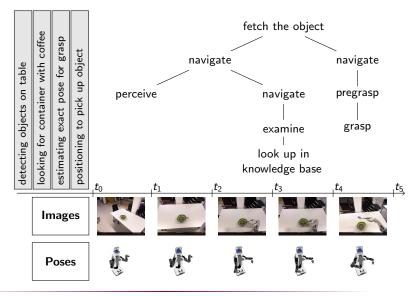
Knowledge processing for robots

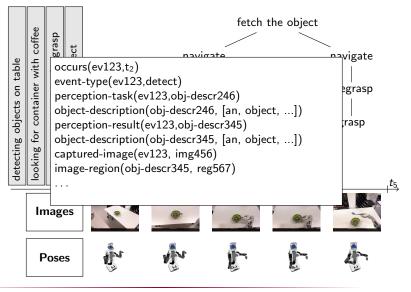

Virtual knowledge bases


Mirror world knowledge bases




Knowledge acquisition and episodic memories




Episodic memories

Semantic retrieval from episodic memories

?- task(Tsk),
 task-action(Tsk, [an, action,
 [type, pick-up],
 [object-acted-on,
 [an, object
 [type, pot],
 [weight, Weight]]]]),

Weight >= 2kg,

Semantic retrieval from episodic memories

Semantic retrieval from episodic memories

```
?- task(Tsk),

task-action(Tsk, [an, action,

[type, pick-up],

[object-acted-on,

[an, object

[type, pot],

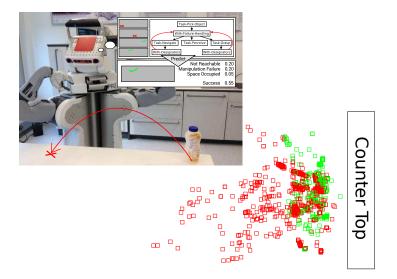
[weight, Weight]]]]),

Weight \geq 2kg,

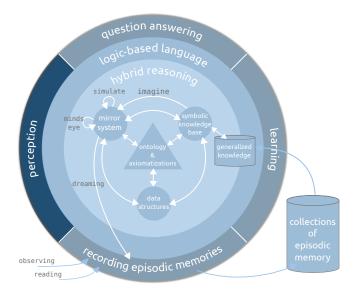
task-start(Tsk,TskStrt),

holds(pose(pr2,Pose),TskStrt).
```

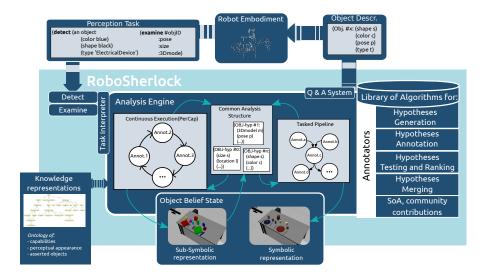

Supervised learning from episodic memories


holds(pose(pr2,Pose),TskStrt),

?-


Supervised learning from episodic memories

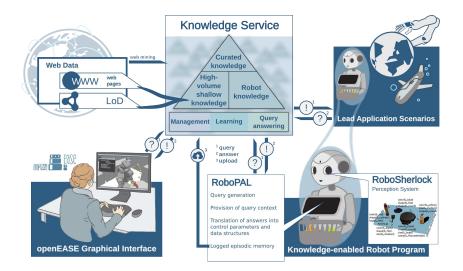
```
?- setof(Pose,
        task(Tsk),
        task-action(Tsk, [an, action,
                              [type, pick-up],
                              [object-acted-on,
                                  [an, object
                                       [type, pot],
                                       [weight, Weight]]]]),
        Weight >= 2kg.
        task-outcome(Tsk, success),
        task-start(Tsk,TskStrt),
        holds(pose(pr2,Pose),TskStrt),
  Poses).
```


Learning control concepts from longterm experience

Perception

Cognition-enabled perception

Final remarks


openease/scenario-components.png

Michael Beetz ROS Industrial, November 2016

Final remarks (2)

An Open Knowledge Service for Robotics

OPENEASE: other tools

<section-header><section-header><section-header><image><image><image>

Description Propert In Association, Marcin Tomorio, Las Minister, "Danse DAE – A Constituição Processing de viso de Tomorio de Interfacio Alimane atra y A Million (2010). Esta atra atra atra atra de Tomorio de Tomorio Alimane, atra de Antonio Alimane astronomo Processing de Tomorio Alimane, Nacembra de Antonio Alima Interfacio de Ingel atra des Des Destructions Processi Antonio da est Interfacio de Ingel atra de Antonio Alimane. Nacembra de Antonio Alimane Interfacio de Ingel atra de Antonio Alimane.

knowledge processing

probabilistic reasoning

pracmin 👷		A market market and a market	
	P(Q E)	Markov Logic Networks in Python	
nandara ang	Deci - About About	West page source	
North Contractions	both for interdent papeline models a system that supports etholer bearings a first of the Problem bearing and ha reasoning to the tractiliste for Artificial 2 property was despired with the partici-	coordin is a language descent from the sensing and reasoning and cohordina in relational doctains, practice has tarted as a lane instantial by field developments in language intelligence at the limitenity of limitence, Germany, and reason of language transmitteness in mind. Due wethouts are and case, and is believeded high-language instance. The	

perception

for your attention

Pepper at AI/Uni-Bremen

First integration during the final RoboHow review (EU project).

Pepper at Al/Uni-Bremen (2)

Michael Beetz ROS Industrial, November 2016

Pepper at AI/Uni-Bremen (3)

- Integration into the kitchen environment
- First attempts at localization using infrared markers (Optitrack tracking system), but would like to replace it by on-board localization when available.
- Communication from the ROS-World using a bridge, to explain OpenEASE data to participants