
Constraint-based Movement Representation grounded in Geometric Features

Georg Bartels∗

georg.bartels@cs.uni-bremen.de
Ingo Kresse†

kresse@cs.tum.edu

Michael Beetz∗

beetz@cs.uni-bremen.de

Abstract— Robots that are to master everyday manipulation
tasks need both: The ability to reason about actions, objects
and action effects, and the ability to perform sophisticated
movement control. To bridge the gap between these two
worlds, we consider the problem of connecting symbolic action
representation with strategies from motion control engineering.
We present a system using the task function approach [1]
to define a common symbolic movement description language
which defines motions as sets of symbolic constraints. We define
these constraints using geometric features, like points, lines,
and planes, grounding the description in the visual percepts of
the robot. Additionally, we propose to assemble task functions
by stacking 1-D feature functions, which leads to a modular
movement specification. We evaluate and validate our approach
on the task of flipping pancakes with a robot, showcasing the
robustness and flexibility of the proposed movement represen-
tation.

I. INTRODUCTION

Robots which are to master everyday manipulation tasks
will have to put screws into nuts, push spatulas under
pancakes, cut bread into pieces, and so on. Such robots need
both: First, the ability to reason about actions, objects, and
the effects of actions on objects and second, the ability to
perform sophisticated movement control.

Action formalisms in artificial intelligence are designed
to reason about actions and their effects. They do, however,
abstract away from the way movements are performed.
Indeed, reasoning about actions in the context of more
sophisticated movements becomes quickly infeasible as has
become evident in the context of the well studied “egg
cracking” problem [2]. Abstracting away from how actions
are performed in terms of movements results in actions
having non-deterministic effects and the formalisms being
incapable of explaining how effects depend on the particular
form of movement.

Representations in robot learning [3], [4] and control engi-
neering, on the other hand, specify sophisticated movement
control but only in terms of coordinate frames [5] or low-
level state and control variables [6]. They typically abstract
away from objects and action effects. This is unsatisfactory
because in manipulation the robot is to perform a movement
to have a desired effect on objects.

To get the best of both worlds, we have investigated the
coupling of methods for symbolic action representation in
Artificial Intelligence with methods in control engineering in
previous work [7]. The goal was to provide formalisms that
are strong in expressing how movements are to be executed

∗ Georg Bartels, and Michael Beetz are with the Institute for Artificial
Intelligence and the TZI (Center for Computing Technologies), University of
Bremen, Germany. † Ingo Kresse is with Technische Universität München,
Germany.

Fig. 1. Two robots making a pancake: (left) related work with restriction
to use full frames as control features and a necessity to group constraints in
6-DOF virtual kinematic chains (VKC). (right) the proposed approach with
visually-grounded features using 1-D constraint functions.

while still allowing the robot to reason about the effects that
complex movements might have on objects and scenes.

We modelled motions as sets of partially ordered move-
ment constraints which can be expressed in terms of objects
and their parts. Constraint-based movement descriptions al-
low the programmer to assert what is essential for the success
of the task while keeping other movement aspects free for
optimizing the movement and keeping flexibility. Reasoning
may then exploit the modular specification by relating action
effects to parts of the movement description, e.g. the pancake
will be pushed off if angle between the spatula and the oven
is too steep.

In this paper, we suggest a novel constraint-based move-
ment description language and its execution controller which
outperforms our predecessor system [7] as it

1) enables the robot to firmly anchor the features em-
ployed for motion control in the perceptual apparatus
of the system to allow feedback-driven execution and
high-level error monitoring.

2) avoids stability issues or kinematic singularities in
order to generate higher performance movements.

3) imposes less specification restrictions to fascilitate
manual and autonomous generation of motion com-
mands.

To evaluate our system and validate our claims we chose
to use the same task as in [7]. We use our low-level
system to have a robot push a spatula under a pancake and
flip it as depicted in Figure 1. This is a very challenging

application both from a low-level and high-level point of
view. Additionally, it allows us to directly compare our new
system to its predecessor [7].

The remainder of this paper has the following structure:
After a brief system overview we present our constraint-
based motion representation in great detail. Secondly, we
introduce the tools we employ for visualization and numeric
analysis of constraints. Afterwards, we evaluate the system
using the task of pushing a spatula under a pancake, and
compare our movement description language to that of [7].
We present validation of our approach by performing the
task of flipping a pancake with a real-world robot. Finally,
we will conclude the paper with a summary and an outlook
on future work.

symbolic movement description

task function approach

constraint-based commands
and feedback

numeric commands
and feedback

robot motion control

Fig. 2. Conceptual overview of the system: The task function approach
maps symbol movement constraints onto numeric control commands and
visa versa.

II. SYSTEM OVERVIEW

Consider as an example the pushing of a spatula under a
pancake. Informally, this could be described as a movement
where (1) the spatula is always points towards the center
of the pancake (seen from above), (2) the spatula touches
the oven outside of the pancake, (3) after the touching the
robot pushes the spatula firmly onto the oven while moving
towards the center, and so on.

We propose to model motions such as pancake flipping as
partially ordered sets of movement constraints, i.e. motion
phases. We believe that a useful movement description
language has to exhibit certain desired properties:
• symbolic and qualitative constraints generalize well

over different spatial and kinematic setups
• composable constraint sets allow automatic generation
• motion constraints expressed in terms of perceivable

object parts allow tracking-based monitoring
• motion specification languages have to cover the rich-

ness of state-of-the-art motion control theory
This last requirement asks for a mapping of the constraint-

based movement description language into established con-
trol engineering frameworks, such as [8], [9], [5], [10]. We
believe this is necessary to generate high quality movements
which in turn is necessary to successfully achieve sophisti-
cated manipulations such as pancake flipping. We employ the
task function approach to perform this mapping from symbol
movement constraints down to numeric feedback control of
the robot. Figure 2 depicts a conceptual view of the system.

Finally, we provide a short sample movement description
in Figure 3. The example corresponds to the informal de-

scribtion of pancake flipping from the beginning of this sec-
tion. We show sample constraints and one feature definition
for the first motion phase, i.e. positioning the spatula front
edge over the pancake oven. Each constraint relates one tool
feature on the spatula to one object-feature on the oven by
using a feature function. Ranges express the desired goal
state of a constraint.� �

features{
feature{

name = spatula-front-axis
ref_frame = /spatula_blade
type = LINE
position = [0.0, 0.0, blade_length/2.0]
direction = [0.0, 0.1, 0.0]}

...}
constraints{
constraint{

tool_feature = spatula-front-axis
object_feature = oven-center-point
function = distance
range [0.0; oven_radius]}

constraint{
tool_feature = spatula-front-axis
object_feature = oven-plane
function = height
range [0.1; +inf]}

...}� �
Fig. 3. Sample constraint and feature definitions for the first phase of
pancake flipping, positioning the front of the spatula over the oven. The
relevant syntactic elements of the language are shown in bold font.

III. LOW-LEVEL CONSTRAINT REPRESENTATION

Consider directly translating a high level constraint like
“keep the main axis of the spatula pointed at the center of
the oven” into the control law of a robotic manipulator, while
also preserving its semantic information. In this section we
present the low-level constraint representation and execution
we use to achieve this.

A. Task Function Approach

The control system we propose uses the task function
approach [1]. A task function is a differentiable function
of the robot’s posture. Using it’s derivative, the robot is
controlled such that the task function yields a desired value.
It is also possible to define a task function over different
sensor data e.g. the measurement of a force-torque sensor,
but the derivative still has to be a function of the robot
configuration to enable control.

In particular, we take the approach used in iTaSC [11], in
which task functions are defined over the pose of an object
that is to be manipulated with respect to a tool which is
attached to the robots end-effector. This approach fascilitates
generalization to different robots or e.g. two-arm setups in
which another robot arm is holding the object.

Consider the poses of the tool xt and the object that
shall be manipulated xo. We define the task function scoring

(a) A point feature used to model the
center of a spatula.

(b) A line-segment feature which rep-
resents the side edge of a spatula.

(c) The oven is modeled use a plane-
segment feature.

Fig. 4. The three geometric features supported by the system with example usages: The point, line-segment and plane-segment feature.

the relationship between both objects as y = ft(xt,xo).
Differentiating the task function with respect to time yields:

ẏ =
∂ft
∂xt

ẋt +
∂ft
∂xo

ẋo. (1)

Assuming that we can only control the tool and not the
object, we simplify (1) to

ẏ =
∂ft
∂xt

ẋt = Htt, (2)

where H is called the interaction matrix and tt denotes the
twist of the tool. As we assume the tool to be rigidly attached
to the gripper of the robot we use the robot Jacobian JR to
derive the control law which relates joint velocities q̇ to the
derivative of the feature function:

ẏ = HJRq̇. (3)

Calculating the weighted pseudo-inverse of HJR we can
derive the necessary joint velocities to obtain the desired
changes in the task function values. Please note, we also
assumed a good calibration of the tool within the gripper.
In previous work we demonstrated how this can be done
automatically using visual features of tools like lines, holes
or concavities. [12]. Also note, it is necessary to transform
the reference points and -frames of both H and JR before
combining them and pseudo-inverting the result [13], [14].

In this paper, we propose to construct the task function
ft by stacking a set of n scalar-valued feature functions
ffi(xt,xo):

ft(xt,xo) =

ff1(xt,xo)
...

ffn(xt,xo)

 . (4)

Each of the feature functions ffi(. . .) expresses to which
extent a specific spatial relationship between the features of
tool and object, such as perpendicularity or distance, holds.
Thus, they directly map constraints like “keep the main axis
of the spatula pointed at the center of the oven” into the
control law for the robot.

B. Geometric Features
The basic building blocks of the motion specification

framework we present are its geometric features. They rep-
resent remarkable parts of the tool and object that shall be
related to one another. Currently, we have the following
geometric features implemented in our system: A point
feature, which might represent a small button of an oven,
a line feature, e.g. denoting the edge of a tool or a pointing
device such as a finger, and a plane feature, that can be used
to model planar support surfaces. All of the features have
the following properties:
• a reference frame, w.r.t which they are expressed
• an origin vector, denoting the Cartesian position of the

feature
• a direction vector, denoting the main orientation of the

feature (note that for points this is ignored and for
planes this corresponds to the normal of the plane)

Figure 4 shows objects with sample features visualized that
are used to model key parts of the interacting objects.

C. Feature Functions
Using the geometric features we define feature functions

ffi that map two features onto a scalar value. As already
pointed out, feature functions need to be differentiable and
depend on the pose of the robot because the tool feature is
attached to the end-effector. Also recall that we build the
interaction matrix H by assembling the partial derivatives of
the feature functions w.r.t tool motions ∂xt. The presented
system contains – among others – the following feature
functions which we use for evaluation:
• perpendicular: Equals zero if both feature directions are

perpendicular to one another.
• height: corresponds to the length of vector between the

origins of the two features, projected onto the direction
of the first feature.

• distance: denotes the length of the vector between the
origins of the two features, projected onto the perpen-
dicular of the direction of the first feature.

• pointing at: equals zero if the direction of the first
feature is pointing at the second one, i.e. is directed
at some point on the line defined by the origin and
direction vectors of the second feature.

Fig. 5. Visualization of the qualitative meaning of the projected distance
(left) and height (right) feature functions between the center of a plane
segment and a point.

Using feature functions allows us to express spatial re-
lationships between geometric features as numerical values.
For example, we can express that a line in a given situation is
pointing more at the center of a plane than in a second setup.
Figure 5 shows exemplary visualizations of the height and
projected distance feature functions evaluated on a point and
plane-segment feature, respectively. Please note, we assume
perception to provide the homogeneous transformations be-
tween the reference frames of the feature to evaluate the
feature functions.

D. Constraints

Finally, we define constraints as sets that contain a pair
of geometric features, one feature function to describe the
intended relationship and a desired value yd for the feature
function. For example, to have a line feature lineaxis –
corresponding to the main axis of our spatula – pointing at
the plane planeoven which represents the oven, we just need to
specify y1 = ff1(. . .) = pointing at(lineaxis, planeoven) and
yd = 0.

Fig. 6. Aligning a spatula with an oven using two alignment constraints:
Restricting the front line-segment of the spatula to be very close to
perpendicular to the oven plane’s normal causes a good contact (left), while
the perpendicular constraint between the side edge and the oven regulates
the angle between spatula and oven (right).

A further example is given in Figure 6. Using a set of
three constraints we determine the relative orientation of the
spatula with respect to the oven. First of all, the front line
of the spatula shall be perpendicular to the oven plane’s
normal, i.e. desired value zero. This constraint causes the
front edge of the spatula to form a nice contact with the

surface of the oven. Additionally, we set up a perpendicular
constraint between the side edge of the spatula and the
oven plane which has a non-zero desired value. This value
determines the outcome of the pushing action, and learning
from demonstration could be a means to obtaining it. Finally,
we added a constraint requiring the main axis of the spatula
to point at the center of the plane segment representing the
oven (not shown in Figure 6). This example highlights how
a set of constraints expresses complex spatial relationships
in a modular and feature-based way.

E. Controllers for Range-Based Constraints

To incorporate more flexibility into the constraint def-
initions, we allow for desired ranges [ylo, yhi] instead of
just a single desired value yd for each constraint output.
This is useful because symbolic constraints often translate
to inequality expressions, e.g. “hold the spatula over the
pancake”. Given the current output values and the desired
ranges, the controller calculates the desired velocity ẏdes of
each constraint.1 These are then used to solve equation 3 for
the desired robot joint velocities q̇des which are sent to the
robot hardware.

Furthermore, each 1-D constraint function controller also
controls its corresponding weighting factor w influencing
the calculation of the weighted pseudo-inverse of HJR.
Whenever the output value of a constraint function is within
the desired range, the controller lowers the weight of that
constraint. Reducing the weight of a constraint effectively
extends its instantaneous null space, i.e. gives more freedom
to other conflicting and unfulfilled constraints.

Since this part of the system is almost identical in design
to our previous system we refer the reader to [7] and our
code repository for further details.

IV. ANALYSIS OF CONSTRAINT SETS

A. Visualization of Constraint Sets

Given a set of constraints such as have a tilted angle
between the main spatula axis and the oven plane and have
no distance between the front edge of the spatula and the
oven plane, we want to visualize the tool motion each of
them causes. By visually observing alignment properties
or locations of movement axes users may better judge the
correctness of constraint sets during motion execution.

We present a method to visualize the effect of any task
function defined over Cartesian transformations. The input
for our method is the interaction matrix H and the poses
(positions p) set in relation by the task function. There-
fore our method applies to any task function defined over
Cartesian transformations, e.g. the type of task functions we
present or virtual kinematic chains. It even generalizes to
robot Jacobians.

As shown in Figure 7, we compute and display the
instantaneous movements (twists) that affect one and only
one constraint at a time. Rotational constraints are displayed

1For online computation of interpolation between motion states in
constraint space we use the reflexxes software library: http://www.
reflexxes.com

http://www.reflexxes.com
http://www.reflexxes.com

Fig. 7. Visualization of rotational twists (left) and translational twists
(right)

by their axis of rotation, translational constraints by their
direction.

1) Computing Independent Twists: Given the interaction
matrix H, we first compute instantaneous movements (twists)
that affect one and only one constraint at a time. By this
definition, we call them mutually orthogonal.

These twists are more useful for display purposes. In par-
ticular, our angular alignment constraints do not depend on a
position and thus the location of their instantaneous rotation
axis is not defined. However, by demanding orthogonality
with other constraints, we can infer the location of the axis
as a place where rotations around it do not affect other
constraints.

Consider the task interaction matrix from equation 2: It
computes how a particular twist affects the constraints. Here,
we seek the inverse: Given a particular ẏ (one, where only
one constraint is non-null), we want to compute the twist
that affects this (and only this) constraint. This is computed
by the inverse of the interaction matrix H+.

If the twists in the rows of H are linearly independent, the
inverse matrix H+ yields columns of mutually orthogonal
twists , i.e. each twist affects only its respective constraint.

2) Visualization of Twists: For visualizing twists, we
draw some ideas from screw theory [15] and Plücker line
representations [16]. A twist can be interpreted as a rotation
around an axis and a simultaneous translation along the same
axis (screw movement). For rotational joints, this axis can
be visualized: The segment of the line that is closest to the
origin is displayed using a cylinder.

For pure translational movements, the location of this axis
is not defined, only its orientation. This type of movement
can be visualized as a line, showing the direction. However,
one still needs to calculate the location and length of this
line.

When displaying twists, three possibly different coordinate
systems are of interest:
• The reference frame in which directions are expressed.
• The reference point around which pure rotations hap-

pen.
• The target frame which determines where to show lines.
The reference frame and -point must be known in order to

interpret a twist. For visualization, however, we change the

reference frame of the twist to the target frame. We refer the
reader to [14] for a describtion of how to achieve this.

For the visualization of the instantaneous rotation axis, we
exploit the fact that a twist can be re-interpreted as a Plücker
line t = (q,q0) where q is the rotational part and q0 is the
translational part of the twist. The direction of the line is
simply its directional part q and the position is the closest
point of the line to the origin and is computed as:

p =
q× q0

‖q‖2

A short line segment around this point is displayed to
visualize the twist.

If the twist is (nearly) a pure translation, then q0 is close
to 0 and the axis would be placed (nearly) at infinity. For
these constraints, only the direction vectors (v1, ...,vn) are
given, locations and lengths need to be inferred. This step
takes into account the translation p between tool and object:
The translations are required to form a path from the object
origin to the tool origin, i.e. they must sum up to p:

p =

n∑
i=n

αivi (5)

In matrix form this becomes:

Vα = p (6)

with V = [v1 · · ·vn]. Solving this linear equation for α
yields the lengths of the visualization vectors. Their locations
are determined by concatenating these vector together in the
order as they appear in the inverse interaction matrix H+

(see Figure 7, right).
We also move the target frame of the rotational constraints

to the end point of the last translational constraint line,
in order to maintain visual coherence and to avoid axis
segments far away from other markers.

This visualization tool is well-suited for virtual kinematic
chains and other task functions defined over the Cartesian
transformations between object and tool. We have used it
during system development, design of the pancake flipping
application, and to generate the simulation figures in this
paper.

B. Combination / Comparison of Constraints

Imagine a situation in which a user of our system has
assigned alignment constraints to both the left and right side
of the spatula. Are there ways to detect that they depend
on each other? Similarly, consider the alignments of the
spatula’s front edge, its side edge and its blade plane (all
w.r.t. the oven). How to detect that only two of them are
controllable at the same time? Both situations are displayed
in Figure 8.

This kind of reasoning is crucial when autonomously
combining constraints in the suggested modular fashion.
Ideally, we would like the system to only accept constraint
sets in which all constraints are independently controllable.
Such a situation is given when the rows of the interaction

Fig. 8. Dependent alignment constraints (left image: left and right spatula
edges, right image: left and front spatula edges and blade plane.m)

matrix H are linearly independent. In this case it is possible
to find an inverse matrix H+ in which each column contains
a twist that affects one and only one constraint. In order to
rule out local singularities – which might be avoided by the
desired ranges of the constraints – we check the rank of H
for many transformations and take the maximum.

Another interesting question that can be answered with
this tool is whether two sets of constraints are equivalent
from a control point of view, i.e. if they are controlling the
same degrees of freedom. This is true for any task function
if

rank(H1) = rank(H2) = rank(
[

H1

H2

]
)

V. EVALUATION & VALIDATION

For evaluation we want to compare our abstract low-level
movement control machine to its predecessor [7] because it
is the most related approach in the literature. The evaluation
considers three aspects of the proposed system: Singularities
of the underlying representation, execution discontinuities,
and the expressiveness of the movement descriptive lan-
guage. As evaluation task we choose flipping of a pancake
with a spatula.

Previously [7], we performed robotic pancake flipping by
spanning a 6-DOF VKC between the oven and the spatula
(see Fig.1) and controlling its virtual joints. For the first
three joints we used cylinder coordinates (angle, distance,
and height, a, d, h) which was motivated by the rotational
symmetry of the oven. For orienting the tool we chose
RPY angles which roughly correspond to the constraints of
aligning the front edge (af), aligning the side edge (as) and
pointing direction (p).

We essentially re-create the same chain using feature-
based constraints within our framework. As a result, we are
able to compare both approaches while performing the same
task.

A. Representation Singularities and Discontinuities

To detect a singularity, we can compute the rank of the
interaction matrix H as described in section IV-B. Singu-
larities represent poses in which two constraints become
dependent. However, for a controller it is equally important to
avoid discontinuities. To detect these, we compute the second

Fig. 10. Constraints at singular positions (left: RPY, right: feature-
based). The green rotation/translation axes are fine, the blue axes have a
discontinuity and are thus unusable for control

derivatives using three equidistant samples (x1, x2, x3) of the
task function ft around the current pose:

ft
′′ ≈ ft(x3)− 2ft(x2) + ft(x1)

h2
(7)

Where h is the distance between the samples. If the value
of ft

′′ exceeds a threshold, we assume to have found a
discontinuity.

Using this investigation methodology, we compare the
virtual linkage constraints with our feature-based constraints
near a singularity. The spatula is moved over the center of
the oven. At this place, two angles are undefined: 1) the
direction where the spatula is coming from – it is already
there – and 2) the direction in which the spatula is pointing
(relative to the center) – it is always ’away’ from the center.
However, the alignment constraints for the front-edge and the
side-edge of the spatula are semantically independent. Figure
10 visualizes the described tool pose. Near this singularity
the following constraints become uncontrollable because of
discontinuities:

approach angle dist height align-front align-side point-at
virtual-linkage X . . X X X
feature-based X X

Fig. 11. Comparison of uncontrollable constraints near a singular pose.
Marked constraints have become uncontrollable in the given pose. The pro-
posed feature-based formulation retains control over two position constraints
which its VKC-based predecessor loses.

For our previous virtual-linkage solution, the angles de-
pend on the cylinder coordinates: At the singularity at dist=0,
all three angles become discontinuous. For the feature-based
constraints, the align-front and align-side constraints are
completely independent of the position and thus remain
well-defined and controllable. This demonstrates that our
approach avoids several discontinuities that otherwise require
heuristics, e.g. always keeping a minimal distance from the
oven center.

Some discontinuities remain, inherent in the problem
specification. However, the system can detect them, allowing
automatic addition of extra constraints to avoid singularities.

Regarding the angle representations, consider the example
given in Figure 12. The spatula is rotated such that both the
front and the side edge are at roughly 45 degrees to the oven
plane (af and as), pointing about 20 degrees left to the oven
center (ap).

� �
start_frame = pancake
end_frame = spatula
VKC = {rot-z,trans-x,trans-z,rot-x,rot-y,rot-z}
constraint1{
semantics = ‘‘approach-angle’’
range <unconstrained>}

constraint2{
semantics = ‘‘distance’’
range = [...]}

constraint3{
semantics = ‘‘height’’
range = [...]}

...

constraint6{
semantics = ‘‘align-front’’
range = [...]}� �

� �
constraint{
tool_feature = spatula-blade-plane
object_feature = pancake-plane
function = perpendicular
range [...]}

constraint{
tool_feature = spatula-main-axis
object_feature = pancake-center-point
function = pointing-at
range [...]}

...

constraint{
tool_feature = spatula-front-axis
object_feature = pancake-rim-line
function = distance
range [...]}� �

(left) Movement description language in the predecessor controller [7]: Users need to define the entire fixed-sized 6-DOF
VKC. It is noteworthy that constraints which are unnecessary during a motion still need to be modelled, e.g. constraint1.
Additionally, the semantics of each constraint strongly depend upon context, and are provided as inputs. For example,
constraint1 and constraint6, are both rotations around z. Both, however, carry different semantic meaning.
(right) Our newly suggested description: The number of constraints is unrestricted. Each constraint is defined over its
own set of features. Thus, it is possible to have more than two features of interest in a motion description. In our
earlier description language this required an additional VKC for every new pair of frames. Finally, the feature functions
themselves carry their own semantics. This removes the need for the high-level to connect semantics and functionality.

Fig. 9. Comparing two movement descriptions: On the left, the description as presented in [7] and on the right the newly suggested description.

Fig. 12. A non-trivial orientation in which RPY-angles lose their meaning.

Our feature-based constraints correctly report these values
as (af=-39o, as=50o, p=18o). The RPY angle representa-
tion looses this meaning: It reports (af=-17o, as=-18o, p=-
73o). While deviations in af and as might be tolerable in
certain situations, the pointing direction has lost meaning
completely. At the (0, 0, 0)-position, this meaning was still
valid.

B. Expressiveness and Usefulness of the Movement Descrip-
tion

To evaluate the expressive differences between our pro-
posed and its predecessor description language we display

parts of a corresponding motion description in Figure 9.
Both examples describe a sub-motion from a robotic pancake
baking task.

Comparing both descriptions, it becomes apparent that
our improved language allows for more flexible movement
specifications because constraints are allowed in any number
and can be ordered arbitrarily. These properties make our
representation more modular. Regarding [7], constraints need
to be used in groups of six, all part of 6-DOF VKCs – a
considerable specification restriction.

In our predecessor system the frames and the virtual joints
in the VKCs had to be chosen with great care to ensure
chain joints with semantic meaning. It is obviously difficult
to automate this reasoning which is a prerequisite for an
autonomous high-level system that uses our earlier abstract
low-level movement control system. Our newly proposed
system, however, encodes semantics in carefully designed
feature functions relating object features. As these features
are grounded in perception, a possible high-level system no
longer needs to decide where to put control frames. Equally,
human designers may also find the application programming
task simplified.

C. Validation Experiments

We validated our system by performing the task of pancake
flipping on a real-world robot. The robot employs both of
its arms to complete the assignment, with the movements
modelled and executed using the proposed approach. A video

Fig. 13. Visualization of the PR2 pouring content from a bottle onto
the pancake oven. The task was modelled with four constraints employing
each a different feature function (height, distance, perpendicular, pointing-
at). Only three features were necessary to complete the specification: bottle
axis, bottle cap, and oven center plane.

recording with detailed setup descriptions can be found in
the supplemental material to this paper. Additionally, we
modelled the task of pouring a liquid from a bottle (see
Figure 13), and are assessing our movement description
language on further tasks.

VI. CONCLUSION

We presented an abstract low-level movement control
system. The system is able to perform motions that are
specified in terms of sets of constraints over object parts
relations, e.g. move the spatula plane next to the oven
plane, keep both planes parallel, while the main axis of the
spatula is pointing at the rim of the pancake. This interface
provides a semantically higher and richer interface, enabling
a symbolic high-level system to reason about the effects of
actions in terms of the movement parameters that caused
them.

Using geometric features, such as points, lines or planes,
as control features is a key property of the presented de-
scription language. It thus directly grounds the movement
specification into the perceptual apparatus of the robot. Addi-
tionally, we do not employ an underlying modelling structure
like virtual kinematic chains, which greatly improves the
versatility and modularity of our system.

We evaluated and validated the system in a robotic pancake
making experiment, and compared performance with its
predecessor reference system [7]. Simulated and real-world
experiments show the applicability of our approach. Addi-
tionally, we highlighted the improved modularity and better
grounding of our motion representation. In terms of angular
singularities and control discontinuities we showed that our
proposed system avoids issues that the system presented in
[7] encountered. Furthermore, we presented techniques to
analyze interaction matrices which simplify debugging.

In the future, we will connect the abstract low-level move-
ment control system to a reasoning system which can exploit
the expressiveness of the presented movement description.
Consequently, drawing nearer to the goal of equipping robots
with the manipulation competence humans exhibit everyday.

ACKNOWLEDGMENTS

This work is supported in part by the EU FP7 Projects RoboHow
(grant number 288533) and SAPHARI (grant number 287513). We
thank Joris DeSchutter’s and Herman Bruyninckx’ group from KU
Leuven for insightful discussions.

REFERENCES

[1] C. Samson, M. Le Borgne, and B. Espiau, Robot Control, the Task
Function Approach. Oxford, England: Clarendon Press, 1991.

[2] L. Morgenstern, “Mid-Sized Axiomatizations of Commonsense Prob-
lems: A Case Study in Egg Cracking,” Studia Logica, vol. 67, no. 3,
pp. 333–384, 2001.

[3] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aero-
batics through apprenticeship learning,” The International Journal of
Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[4] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, may 2011, pp. 3828–3834.

[5] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” Int. J. Rob. Res., vol. 26, no. 5,
pp. 433–455, 2007.

[6] S. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” Robotics, IEEE
Transactions on, vol. 27, no. 5, pp. 943 –957, oct. 2011.

[7] I. Kresse and M. Beetz, “Movement-aware action control – integrating
symbolic and control-theoretic action execution,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), St. Paul, MN,
USA, May 14–18 2012, pp. 3245–3251.

[8] Albu-Schaffer, A., Haddadin, S., Ott, Ch, Stemmer, A., Wimbock, T.,
Hirzinger, and G., “The DLR Lightweight Robot – Design and Control
Concepts for Robots in Human Environments,” Industrial Robot: An
International Journal, vol. 34, no. 5, pp. 376–385, 2007.

[9] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” Robotics and
Automation, IEEE Journal of, vol. 3, no. 1, pp. 43–53, February 1987.

[10] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to inte-
grate unilateral constraints in the stack of tasks,” IEEE Transactions
on Robotics, vol. 25, pp. 670–685, 2009.

[11] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and J. D. Schutter,
“iTASC: A Tool for Multi-Sensor Integration in Robot Manipulation,”
in Multisensor Fusion and Integration for Intelligent Systems, ser.
Lecture Notes in Electrical Engineering, H. K. H. Hahn and S. Lee,
Eds. Springer, 2009, vol. 35, pp. 235–254.

[12] I. Kresse, U. Klank, and M. Beetz, “Multimodal autonomous tool
analyses and appropriate application,” in 11th IEEE-RAS International
Conference on Humanoid Robots, Bled, Slovenia, October, 26–28
2011.

[13] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx, and
J. De Schutter, “Geometric relations between rigid bodies: Semantics
for standardization,” IEEE Robotics and Automation Magazine, 2012.

[14] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Berlin, Heidelberg: Springer, 2008. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-30301-5

[15] M. T. Mason, Mechanics of Robotic Manipulation. MIT Press, 2001.
[16] K. Shoemake, “Plücker coordinate tutorial,” Ray Tracing News,

vol. 11, no. 1, 1997.

http://dx.doi.org/10.1007/978-3-540-30301-5
http://dx.doi.org/10.1007/978-3-540-30301-5

	Introduction
	System Overview
	Low-level Constraint Representation
	Task Function Approach
	Geometric Features
	Feature Functions
	Constraints
	Controllers for Range-Based Constraints

	Analysis of Constraint Sets
	Visualization of Constraint Sets
	Computing Independent Twists
	Visualization of Twists

	Combination / Comparison of Constraints

	Evaluation & Validation
	Representation Singularities and Discontinuities
	Expressiveness and Usefulness of the Movement Description
	Validation Experiments

	Conclusion
	References

