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Abstract

This article investigates fundamental issues in scaling autonomous personal robots towards
open-ended sets of everyday manipulation tasks which involve high complexity and vague
job specifications. To achieve this, we propose a control architecture that synergetically
integrates some of the most promising artificial intelligence (AI) methods that we con-
sider as necessary for the performance of everyday manipulation tasks in human living
environments: deep representations, probabilistic first-order learning and reasoning, and
transformational planning of reactive behavior — all of which are integrated in a coherent
high-level robot control system: COGITO.

We demonstrate the strengths of this combination of methods by realizing, as a proof of
concept, an autonomous personal robot capable of setting a table efficiently using instruc-
tions from the world wide web. To do so, the robot translates instructions into executable
robot plans, debugs its plan to eliminate behavior flaws caused by missing pieces of in-
formation and ambiguities in the instructions, optimizes its plan by revising the course of
activity, and infers the most likely job from vague job description using probabilistic rea-
soning.

Key words: transformational planning, natural language processing, probabilistic
reasoning, reactive control

1 Introduction

Enabling autonomous mobile manipulation robots to perform household chores ex-
ceeds, in terms of task and context complexity, anything that we have investigated
in motion planning and autonomous robot control as well as in artificial intelligence
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so far. Household robots have to generate, debug and optimize a wide spectrum of
plans that must contain rich specifications of how actions are to be executed, what
events to wait for, which additional behavior constraints to satisfy, and which prob-
lems to watch out for. Successful handling of such tasks calls for a sophisticated
control scheme that must be based on more than one paradigm. In the following,
we thus propose a hybrid control scheme that includes plan-based reactive con-
trol, probabilistic decision-making and plan parameterization, and automated plan
acquisition from natural language sources.

Let us consider the task of table setting as an example. For people, “please set the
table” suffices as an executable task. Since meals are everyday activities, people
know what to put on the table and where, regardless of the context (be it a formal
dinner or a regular breakfast with the family). People also know how to optimize
the task by, for example, stacking plates, carrying cups in two hands, leaving doors
open, etc., and they know how to deal with the open-endedness of the task do-
main. Being able to perform novel tasks both adequately and efficiently is certainly
another key requirement.

The classical approach to solving novel tasks in novel contexts is action planning,
which has been studied in artificial intelligence for almost half a century. To ap-
ply AI planning, we can state the task as a goal state, provide a library of atomic
actions together with specifications of their preconditions and effects, and the AI
planning methods will then determine a sequence of actions or a mapping of states
into actions that transforms the current state into one satisfying the stated goal. Un-
fortunately, the way in which the computational problems are defined typically does
not match the requirements for performing open-ended sets of household tasks for
a number of reasons: We may not know precisely what the goal state is; Knowing
how to perform an action may be much more important than knowing which actions
to perform in which order; Large amounts of domain knowledge are required.

Luckily, much of the knowledge that we require to carry out novel tasks is readily
available, as web pages such as ehow.com and wikihow.com provide step-by-
step instructions for tasks such setting the table (Figure 2) or cooking spaghetti.
Both web sites contain thousands of directives for everyday activities.The compre-
hensiveness of these task instructions goes well beyond the expressiveness of plan-
ning problem descriptions used in the area of AI action planning [10]. Even if the
planning problems could be expressed, the number of objects and actions including
their possible parameterizations would result in search spaces that are not tractable
by the search algorithms of these planning systems. Thus, a promising alternative
to generating plans from atomic actions as it is the standard approach in AI plan-
ning, which is still far away from generating plans with these types of complexities
[6], is to look up the instructions for a new task from web pages and translate them
into executable robot plans. Of course, such translations are not straightforward,
because the instructions are not intended to be processed by machines and because
tasks in general may be subject to uncertainty.

In this article, we investigate a novel computational model for task planning and
execution for personal robots performing everyday manipulation tasks, in which
the execution of a task involves four stages:
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(1) Translation of the natural language instructions into an almost working but
buggy robot plan. Owing to the fact that web instructions are written to be ex-
ecuted by people with common sense knowledge, the instructions may contain
ambiguities, missing parameter information and even missing plan steps.

(2) Debugging of the plan. In a second step, the above plan flaws are to be de-
tected, diagnosed, and forestalled using transformational planning based on
mental simulations of the plans in a simulated environment [5].

(3) Plan parameterization. Plans for everyday manipulation tasks depend on nu-
merous parameters (e.g. the number of people taking part in a meal, specific
preferences, etc.). We apply statistical relational learning techniques to infer
this information based on previous observations.

(4) Plan optimization. Web instructions also fail to specify how tasks can be car-
ried out efficiently. Thus, transformational planning is applied in order to find
out, for example, that the table setting task can be carried out more efficiently
if the robot stacks the plates before carrying them, if it carries cups in each
hand, and if it leaves the cupboard doors open while setting the table [22].

The key contribution of this article is the synergetic integration of some of the most
promising AI methods, which we consider as necessary for the performance of
everyday manipulation tasks in human living environments:

• We propose deep representations (i.e. representations that combine various lev-
els of abstraction, ranging, for example, from the continuous limb motions re-
quired to perform an activity to atomic high-level actions, sub-activities and ac-
tivities) and knowledge processing in order to enable the robot to translate natural
language instructions into executable robot control programs. Abstract concepts
from the instructions are mapped to geometric environment models and sensor
data structures of the robot, enabling the robot to perform abstractly specified
jobs.

• We apply probabilistic first-order learning and reasoning to enable the robot to
successfully perform vague or underspecified jobs. For instance, a task such as
“set the table” or “set the table but Anna will have cereals instead of fruits” can
be performed by automatically inferring the most likely setup of the table.

• We realize powerful mechanisms for transformational planning of reactive be-
havior that is capable of eliminating flaws in plans generated from web instruc-
tions and that are caused by incomplete and ambiguous statements in the instruc-
tions. The transformational planning mechanisms are also capable of increasing
the performance of table setting by 23-45% by making structural changes to the
table setting plan.

1.1 Scenario

In this paper, we perform complex activities in a fairly realistic simulation envi-
ronment shown in Figure 1a. The broader context and overall goals of our research
agenda are detailed in [8]. In previous work [7], we investigated lower-level aspects
of how to realize an action such as “putting an object on the table” in the context
of a table setting task, and we thus ignore these aspects in this article. Our robot
is capable of recognizing the objects that are relevant to the task of table setting
(i.e. plates, cups, glasses, etc), it can reliably pick them up and place them at the
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desired destinations, as continuously demonstrated during the open days at Tech-
nische Universität München (TUM) in October 2008 and 2009 (see Figure 1b). In
this article, the focus is on the higher-level control framework of the system.

(a) (b)

Fig. 1. B21 robot: (a) real environment vs. simulation; (b) public demonstration at TUM

Let us assume that the robot is given the command “Set the table.” Initially, the
robot may have only basic knowledge about activities, e.g. that the goal of ’table
setting’ is the placement of objects on the table, where the items to be used by
the individuals are located in front of the respective individual’s seat. From this
knowledge, the robot infers that table setting can be parameterized with the set of
people expected to participate and the locations at which they sit. If the robot finds a
plan for a given command in its plan library, it tries to infer the optimal parameters
using learned probabilistic models. If there is no such plan, it queries the web to
retrieve instructions (see Figure 2).

These instructions are interpreted by the robot in terms of the concepts it knows
about. Thus, the abstract concept “table” is linked to the model of the particu-
lar table in its environment, including its position, dimensions and information to
parametrize navigation, visual search, and motion tasks (see Figure 4).

Once the instructions are interpreted, the robot roughly knows about the sequence
of actions to be performed. For making the plan flexible and reliable, however, it
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Fig. 2. Example task instruction from wikihow.com.
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Plan failed.
Collision

with chair.

1 The robot is at its initial position.
2 The robot approaches the place

mat and picks it up.
3 The robot tries to put the place

mat in front of the chair. A colli-
sion with the chair is detected by
the projection system which fin-
ishes with a projection error.

Fig. 3. The first projection of an execution scenario where the robot tries to put the place
mat in front of the table.

needs to add code pieces for execution monitoring, failure detection, failure analy-
sis, diagnosis and recovery. The resulting concurrent reactive plan comprises more
than 2000 lines of code that have been generated automatically from the initial
12-lines of instructions.

Most instructions are missing essential information that is required for executing
them, like the exact locations at which objects are to be placed, or additional ac-
tions that are necessary to make an object reachable. In order to identify and debug
these flaws, the robot “mentally” executes the plans using the robot’s simulation
capabilities. The result of such a simulation — the projected execution scenario de-
picted in Figure 3 — includes continuous data such as trajectories, discrete actions
and events like the placing of objects, the intentions of the robot, and its belief state.

Fig. 4: Results of the query
owl query(?O, type, “Table-
PieceOfFurniture”), retriev-
ing objects of the type “Table-
PieceOfFurniture” from the
knowledge base.

To recognize and diagnose execution failures,
the robot reasons abstractly about the predicted
execution scenarios. It queries whether the robot
has overlooked particular objects, if unexpected
collisions occurred, and so on.

For the table setting instructions, one of the
flaws that are detected this way is a collision
with the chair while navigating to a location
from to put down the place mat. To eliminate
the flaw, the robot adds a supportive goal to tem-
porarily put the chair out of the way and putting
it back immediately after the table has been set.

After having debugged the plan, the robot fur-
ther revises it in order to optimize its perfor-
mance, e.g. by transporting objects using con-
tainers, using both grippers, or skipping repeated actions that collectively have no
effect, such as opening and closing doors. The robot performs these optimizations
by applying transformations to the plan and assessing the efficiency of the resulting
plans.

In order to parametrize its plans, for instance to scale them to the correct number
of people or adapt to their respective preferences, the robot uses probabilistic re-
lational models that have been learned from observations of humans, e.g. of the
participation of family members in various meals and the utensils and foodstuffs
used. The respective queries are issued automatically by the planning system when
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Fig. 5. System components

an under-specified plan, for which a statistical model is available, needs to be pa-
rameterized.

1.2 System Overview

The core component of our system, as shown in Figure 5, is the COGITO plan-
based controller [4,3,2]. Whenever COGITO receives a command, it first checks
in its plan library whether it already has a tailored plan schema for this sort of
command, the required parameterization and the respective situation context. If
so, the appropriate plan schema is instantiated with the command parameters and
consequently executed. COGITO logs any execution data as plans are carried out
for later analysis. Plans that were classified as flawed are then put on the agenda for
future plan improvement.

When the robot is given the command to execute a task for which no plan can be
found in its library, it imports web instructions, and transforms them into formally
specified instructions in its knowledge base — by interacting with the PLANIM-
PORTER component of the system. A (usually buggy) plan is generated from the
formal instructions, which is consequently debugged by repeatedly projecting the
plan and generating an execution trace, criticizing it using this execution trace and
revising it. We attempt to optimize the resulting plans by applying plan transforma-
tions like reordering actions, using containers for transporting objects or optimizing
the usage of the robot’s resources. The optimizations yield an optimized plan that
is added to the plan library.

Another task that can be performed in idle situations is to learn, by interacting
with the PROBCOG first-order probabilistic reasoning component of the system,
statistical relational models of plan parameterizations, provided that the robot has
collected observations describing the respective parameterizations. These models
enable the robot to infer, for any given situation, a suitable set of parameters, al-
lowing it to adapt its plans appropriately prior to execution [14].

2 Knowledge Processing for Autonomous Mobile Manipulation

COGITO employs various kinds of knowledge in order to accomplish its manip-
ulation jobs successfully. It uses symbolic interfaces to a 3D object model of its
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operating environment, to observations of human manipulation actions for reason-
ing about objects and actions and to log data from robot activities. Furthermore,
COGITO has access to general encyclopedic and common sense knowledge.

The concepts in the knowledge base are partly taken from the researchCyc ontol-
ogy [19], partly extended to meet the special needs of mobile robotics (Figure 6).
We furthermore make use of existing links between concepts in Cyc and sets of syn-
onymous words in the WordNet lexical database [9] when resolving the meaning
of words in web instructions.

Fig. 6. Excerpt of the taxonomy in the knowledge base.

To integrate perceived information into the knowledge base, to infer abstract infor-
mation from sensor data, and to translate symbolic specifications into parameteri-
zations of control programs, the symbolic knowledge must be grounded in the ba-
sic data structures of the control system. In COGITO, the knowledge base is tightly
coupled with perception and action modules (Figure 7) like a semantic environment
map created from 3D laser scans [27], a visual object recognition system [16] and
a markerless human motion tracker that helps the system learn from humans [1]. In
addition, the knowledge representation cooperates very closely with the planning
system, as described in the sections that follow. The knowledge processing system
itself is described in more detail in [28].

Fig. 7. Examples of the multi-modal sensor data that are integrated into the knowledge
base.

3 Translating Instructions into Plans

In this section, we will present the steps involved in tranforming natural language
instructions into an executable plan, based on the example sentence “Place a cup
on the table”. Figure 8 gives an overview of the structure of our system. (A more
detailed description of the import procedure can be found in [29].)
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Fig. 8. Left: Overview of the import procedure. Center: Parse tree for the sentence “Place
the cup on the table”. Right: The resulting data structures representing the instruction cre-
ated as an intermediate representation by our algorithm.

3.1 Semantic Parsing

Starting from the syntax tree generated by the Stanford parser, a probabilistic context-
free grammar (PCFG) parser [17], increasingly complex semantic concepts are gen-
erated in a bottom-up fashion using transformation rules similar to those in [26].

Every leaf of the parse tree represents a word, Word(label, pos, synsets), annotated
with a label, a part-of-speech (POS) tag and the synsets the word belongs to (see
Section 3.2). Examples of POS tags are NN for a noun, JJ for an adjective or CD
for a cardinal number. In the following, an underscore denotes a wildcard slot that
can be filled with an arbitrary value.

Words can be accumulated to a quantifier Quant(Word( ,CD, ),Word( ,NN, )) con-
sisting of a cardinal number and a unit, or an object Obj(Word( ,NN, ),Word( ,JJ, ),
Prep, Quant) that is described by a noun, an adjective, prepositional statements and
quantifiers. A prepositional phrase contains a preposition word and an object in-
stance Prep(Word( ,IN, ),Obj), and an instruction is described as Instr(Word( ,VB, ),
Obj,Prep,Word( ,CD, )) with a verb, objects, prepositional postconditions and time
constraints. Since some of the fields are optional, and since the descriptions can be
nested due to the recursive definitions, this method allows for representing com-
plex relations like “to the left of the top left corner of the place mat”. Figure 8
(center/right) exemplarily shows how the parse tree is translated into two Obj in-
stances, one Prep and one Instr .

3.2 Word Sense Retrieval and Disambiguation

Once the structure of instructions has been identified, the system resolves the mean-
ing of the words using the WordNet lexical database [9] and the Cyc ontology [19].
In WordNet, each word can have multiple senses, i.e. it is contained in multiple
“synsets”. There exist mappings from the synsets in WordNet to ontological con-
cepts in Cyc via the synonymousExternalConcept predicate. “Cup” as a noun, for
instance, is part of the synsets N03033513 and N12852875, which are mapped to
the concepts DrinkingMug and Cup-UnitOfVolume respectively.

Most queries return several synsets for each word, so a word sense disambiguation
method has to select one of them. The algorithm we chose is based on the obser-
vation that the word sense of the action verb is strongly related to the prepositions
(e.g. “taking something from” as TakingSomething up vs. “taking something to” as
PuttingSomethingSomewhere). It is further explained in [29].
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3.3 Formal Instruction Representation

With the ontological concepts resolved, a how-to can be formally represented as a
sequence of actions in the knowledge base:

(methodForAction
(COMPLEX TASK ARG1 ARG2 ...)
(actionSequence (TheList action1 action2 ...)))

Each step action1, action2, etc. is an instance of an action concept like Putting-
SomethingSomewhere. Since the knowledge base contains information about re-
quired parameters for each concept, the system can detect if the specification is
complete. For instance, the action PuttingSomethingSomewhere needs to have in-
formation about the object to be manipulated and the location where this object is
to be placed.

Action parameters are created as instances of objects or spatial concepts, and are
linked to the action with special predicates. In the example below, the objectActe-
dOn relation specifies which object the action put1 of type PuttingSomethingSome-
where is to be executed on. purposeOf-Generic is used to describe post-conditions;
in this case, the outcome of the action put1 shall be that the object cup1 is related
to table1 by the on-UnderspecifiedSurface relation.

( isa put1 PuttingSomethingSomewhere)
( isa table1 Table-PieceOfFurniture)
( isa cup1 DrinkingMug)
(objectActedOn put1 cup1)
(purposeOf-Generic

put1 (on-UnderpecifiedSurface cup1 table1))

3.4 Robot Plan Generation

In order to execute the formal instruction representation, it has to be transformed
into a valid robot plan. Actions in the ontology can be directly mapped to high level
plans of the plan library in COGITO. For instance, the action put1, acting on an ob-
ject and a goal location, can be directly mapped to the goal Achieve(Loc(Cup1, Table1)).
Action parameters, like object instances and locations, are linked to object refer-
ences in a plan using designators. Designators are partial, symbolic descriptions of
entities such as locations, objects or actions. During plan execution, solutions that
fit the description are inferred and used to parametrize perception, navigation and
the manipulation planner. Designators and goals are discussed in more detail in the
next section.

4 Plan-based Control of Robotic Agents

In this section, we will first introduce the key concept of the computational model
our plan based control is based on: the robotic abstract machine. Then we will give
an overview of the transformational planning process that is used to debug and
improve the plans imported from the WWW.

Our plans are implemented in extended RPL [20], a reactive plan language based
on Common Lisp. A detailed discussion of transformational planning for plan opti-
mization, plan projection and reasoning about plan execution can be found in [22]
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and [21].

4.1 The Robotic Agent Abstract Machine

We implement our control system using a “Robotic Agent” abstract machine. Our
machine contains data structures, primitives and control structures for specifying
complex behavior. For our purposes, the main data structures are fluents and des-
ignators. Fluents are variables that change over time and signal their changes to
blocked control threads of sensor-driven robot plans. Designators are partial sym-
bolic descriptions of objects, locations and actions and form a common interface
between the planning and reasoning components, which is necessary to solve prob-
lems such as the anchoring of objects or to resolve symbolic descriptions of ob-
jects to real poses. The most important primitive statements are continuous percep-
tion and control processes, such as localization and navigation, which are encapsu-
lated in process modules. Finally, the means for specifying sophisticated behavior
through combination and synchronization are provided in the form of control struc-
tures including conditionals, loops, program variables, processes, and subroutines
as well as high-level constructs (interrupts, monitors) for synchronizing parallel
actions.

Based on the “Robotic Agent” abstract machine, we implemented a plan library
for high level actions, such as putting objects at locations. Plans form a hierarchy,
ranging from the high-level actions necessary for executing WWW plans down to
low-level actions such as moving the arm and grasping objects and have a transpar-
ent structure that allows the planner to “understand” the generated plans without
additional annotations.

Fluents — Processing Dynamic Data. Successful interaction with the environ-
ment requires robots to respond to events and to asynchronously process sensor
data and feedback arriving from the control processes. RPL provides fluents, pro-
gram variables that signal changes of their values. Fluents are best understood in
conjunction with the RPL statements that respond to changes of fluent values. RPL
supports fluents with two language constructs, namely whenever to execute code
whenever a fluent becomes true, and waitfor to wait for a fluent to become true. By
applying operators such as and, or, >, < etc., fluents can be combined to fluent
networks.

Designators. Designators are data structures that describe objects, locations and
actions using conjunctions of symbolic properties. For example,

(object (type cup) (color blue) (on table ))
describes a blue cup that is standing on the table. Designators are resolved at run
time, based on the current belief state and knowledge about the environment. The
properties of a designator are used to select and parametrize reasoning mechanisms
that infer valid solutions for the designator. This includes spatial reasoning, 3D ob-
ject models used by the vision system [16] and probabilistic inference [14]. Desig-
nator solutions are the parameters that are understood by the low level components
of the system.

Control Processes and Process Modules. To facilitate the interaction between
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plans and continuous control processes, the abstract machine provides process mod-
ules. Process modules are elementary program units that constitute a uniform in-
terface between plans and the continuous control processes (such as manipulation
routines, navigation routines or perception routines) and can be used to monitor and
control these processes. More importantly, process modules allow to directly relate
a physical effect with a program component. Grasping errors always originate in
actions that are controlled by the manipulation process module and collisions be-
tween the robot torso and furniture originate in navigation activity, controlled by
the navigation process module.

A schematic view of process modules is shown in Figure 9. The navigation control
process is encapsulated in a process module. Control processes can be activated and
deactivated and return, upon their termination, success and failure signals. They
areparameterizedd by designators and allow the plans to monitor the progress of
their execution by updating fluents that can be read by the plan (e.g. the output
fluent current-waypoint).

valid path found

current waypoint

waypoints

FAILURE

OUTPUT

FLUENTS

SUCCESS

Navigation

Control

Process

PROCESS

PARAMETERS

DEACTIVATEACTIVATE

FEEDBACK SIGNALS

CONTROL INPUTS

Designator

Location

Fig. 9. Process module encapsulating a navigation control process. The input is a location
designator, symbolically describing the goal pose and the context this code is executed in
(e.g. (location (to see) (object cup))). The output fluents provide information about the
status of the current navigation task. The process module can be activated and deactivated
and provides success and failure feedback.

4.2 Plan Representation

Debugging and optimizing plans for everyday manipulation tasks requires diffi-
cult and complex computations. The computational processes can infer the purpose
of sub-plans, automatically generate a plan that can achieve some goal, determine
flaws in the behavior that are caused by sub-plans, and estimate the utility of the
behavior caused by a sub-plan with respect to the robot’s utility model. The com-
putational problems these processes try to solve are, in their most general form,
unsolvable, or at the very least computationally intractable.

To deal with this complexity, robot control programs must be implemented as plans,
i.e. they must contain symbolic annotations about the semantics (i.e. the intention)
of the corresponding set of instructions. We define occasions and goal statements.
Occasions are states of the world that hold over time intervals and are achieved (if
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not already true) by goals. Thus, a goal statement to express that the intention of the
corresponding code is to achieve that the cup is on the table is written as follows:
Achieve(Loc(Cup, Table)) A list of the most important occasion statements used in
the current system can be found in Table 1a.

Goals are organized in a hierarchy, i.e. goals are achieved via sub-goals and at the
lowest level they control the process modules. This hierarchy is important in order
to infer the intention of goal statements. When a goal statement is used within
another goal statement, its intention is to help to achieve its parent goal.

Many reasoning problems (e.g. the problem of determining whether the robot has
tried to achieve a certain state, why it failed, whether it believed in the state, etc.)
are, for arbitrary robot control programs, unsolvable. But they essentially become
a matter of pattern-directed retrieval if the plans are implemented using declarative
statements.

4.3 Plan Projection and Transformational Planning
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Fig. 10: The “criticise-revise” cycle. Af-
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jecting it and querying it for bugs. Then a
new plan revision is created and projected
once more.

How a plan that is produced through
the translation process is debugged
and transformed is depicted in Fig-
ure 10. After generation, the plan is
added as a new candidate plan for
the criticize-revise cycle. A search
space of candidate plans is gener-
ated by first criticizing the plan and
thereby producing analyzed plans,
plans associated with the behavior
flaws they caused, their diagnosis,
and their estimated severity. Criti-
cizing is done by taking a candi-
date plan from the plan queue, pro-
jecting the plan in order to gener-
ate an execution scenario and testing
behavior flaw specifications against
the projected execution scenarios to
detect and diagnose flaws. The an-
alyzed plans are then added to the
plan queue. Then, in the revise step,
the most promising analyzed plan
is taken and all transformation rules
applicable to the diagnosed flaws are applied to the plan in order to produce more
candidate plans. Each of these candidate plans is then criticized and added as an
analyzed plan to the plan queue. This search process continues until a plan is found
that causes no behavior flaws that could be fixed.

4.3.1 Plan Projection

The workhorse of our transformational planning system is a robust and reliable
projection mechanism based on realistic ODE-based physical simulation (Gazebo
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[23]). To predict the effects of a plan, the plan is executed in simulation and, for
every time instant, data about plan execution, the internal data structures, the robot’s
belief state, the values of fluents, and the simulated world state including the exact
locations of objects and the robot and exogenous events are logged. This includes
continuous data, such as trajectories, as well as discrete data instances, such as task
status changes.

4.3.2 Reasoning about Plan Execution, Behavior Flaws and Transformation Rules

Plan projection generates a continuous data stream that is transformed into a first
order representation in order to reason about plan execution and possibly unwanted
side effects caused by the plan. The representation is based on occasions, events,
intentions and causal relations.

As already mentioned, occasions are states that hold over time intervals. The term
Holds(occ, ti) states that the occasion occ holds at time specification ti. Time is
specified either by the term During(t1, t2) to state that the occasion holds during
a sub-interval of [t1, t2] or by the expression Throughout(t1, t2) to state that the
occasion holds throughout the complete time interval. Events represent temporal
properties that indicate state transitions. In most cases, robot actions are the only
cause of events. Table 1b gives an overview of the most important events. We assert
the occurrence of an event ev at time ti with Occurs(ev, ti). Occasions and events
can be specified over two domains: the world and the belief state of the robot,
indicated by an index of W and B for the predicates Holds and Occurs respectively.
Thus, HoldsW (o, ti) states that o holds at ti in the world and HoldsB(o, ti) states that
the robot believes at time ti that the occasion o holds at ti. Syntactically, occasions
are represented as terms or fluents. By giving the same name o to an occasion in
the world as well as to a belief, the programmer asserts that both refer to the same
state of the world. The meaning of the belief and the world states is their grounding
in the log data of the task network and the simulator data respectively. Finally, we
provide two predicates CausesB→W (task, event, ti) and CausesW→B(oW , oB, ti) to
represent the relations between the world and beliefs. The former asserts that a task
causes an event whereas the latter relates two occasion terms, one in the world state,

Contact(obj1, obj2) Two objects are currently
colliding

Supporting(obj1, obj2) objt is standing on objb
Attached(obj1, obj2) obj1 and obj2 are attached

to each other.
Loc(obj, loc) The location of an object
Loc(Robot, loc) The location of the robot
ObjectVisible(obj) The object is visible to the

robot
ObjectInHand(obj) The object is carried by the

robot
Moving(obj) The object is moving

(a) Occasion statements

LocChange(obj) An object changed its loca-
tion

LocChange(Robot) The robot changed its loca-
tion

Collision(obj1, obj2) obj1 and obj2 started col-
liding

CollisionEnd(obj1, obj2) obj1 and obj2 stopped col-
liding

PickUp(obj) obj has been picked up

PutDown(obj) obj has been put down

ObjectPerceived(obj) The object has been per-
ceived

(b) Event statements
Table 1
Occasion and event statements. Occasions are states that hold over time intervals and events
indicate changes in the currently holding occasions.
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(1) Place the placemat in front of the chair.
(2) Place the napkin just left of the center of the placemat.
(3) Place the plate(ceramic, paper or plastic, Ceramic prefered) in the center so

that it just covers the right side of the napkin.
(4) Place the fork on the side of the napkin.
(5) Place the knife to the right so that the blade faces the plate.
(6) Place the spoon right next to the knife.
(7) Place the cup to the top right corner of the placemat.

Fig. 11. Instructions to set a table from http://www.wikihow.com/Set-a-Table

one in the belief state, to each other. In other words, it allows to infer that a specific
belief was caused by a specific world state.

Behavior flaws are defined in the first-order representation of the execution trace
introduced above. As an example, we can state the occurrence of an unexpected
event as follows:

UnexpectedEvent(event, t)⇔
Occurs(event, t) ∧
¬Member(event, ExpectedEvents(t))

Note that the plan interpreter is aware of the set of expected events at any point in
time, because every process module that is active generates a well-defined sequence
of events. Unexpected events always indicate problems in the plan and are therefore
a starting point for plan debugging. To debug a complex plan, we define a hierarchy
of behavior flaws that describes errors such as unexpected events (e.g. unwanted
collisions), unachieved goals (e.g. objects that were placed at wrong locations) and
flaws concerning resource usage and performance (e.g. did the robot carry two
objects at once).

The internal representation of behavior flaws allows the programmer to optionally
define a transformation rule to fix it. Transformation rules have the form:

input schema
output plan condition

Procedurally, the transformation rules are applied as follows. If the condition is
satisfied by the plan expression and the projected execution scenario, then the parts
matching the input schema are replaced by the instantiated schemata of the output
plan. Please note that transformation rules change the semantic structure of plans,
e.g. by inserting plan steps, leaving out some steps, parallelizing them, or enforcing
a partial order on plan steps.

4.4 Plan Debugging in the Scenario

Using the machinery we have introduced above, we can now revisit our demonstra-
tion scenario and explain in more detail how the debugging step is carried out. We
consider a plan that was generated from the instructions in Figure 11.

The first behavior flaw that is detected is the collision of the robot with the chair.
The flaw is diagnosed as a collision-caused-by-navigation flaw, and one of the
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transformation rules that is applicable to this flaw is the rule remove-collision-
threat-temporarily. The transformation rule produces a plan that moves the chair
in order to better reach to the table. This new plan is further investigated and pro-
duces another flaw — a detected-flaw, because the robot’s grippers are already in
use for carrying the place mat. The fix adds code to put down the place mat and
pick it up later around the commands for moving the chair.

While the robot further projects the plan, it detects several other flaws: For each
object, there is a collision with the chair since the robot, per default, moves it back
to its original position after each object manipulation. The detected-flaw, indi-
cating that the grippers are not empty, is also detected and fixed for each object.
This, of course, causes a highly sub-optimal plan that is optimized later, when all
flaws leading to substantial failures are fixed. Other failures include that the plate is
placed on the napkin which is initially placed directly left to the center of the place
mat. The fix adjusts this location to leave enough space for the plate.

All behavior flaw definitions and transformation rules used in this example were
designed to be as flexible and general as possible. That means they work not only in
this specific example but generalize to a wide range of different plans, for instance
cooking pasta.

In Section 6.2 (and, in more detail, in [22]) it has been shown that even for hand-
programmed plans without bugs that cause failures, optimizations via plan trans-
formation can lead to a speedup of up to 45%.

5 Inferring Command Parameterizations from Vague Specifications

In the following, we consider the additional benefit of introducing probabilistic rea-
soning into the control framework. For high-level control, probabilistic reasoning
can be applied to facilitate decision-making within the planning system or, as men-
tioned earlier, to parameterize under-specified plans. The rigidity of the plans we
obtain using the techniques outlined in previous sections (in terms of what plans
achieve) renders them specific to particular situations and requirements. Given the
many circumstances under which a plan could be carried out, and the idiosyncrasies
of the users for whom it is carried out, it seems natural to include the correspond-
ing parameters in the plan generation process, consequently adapting the generated
plans according to the needs at hand. Having identified the parameters of a plan
from a logical description of the respective task, a robot can use statistical knowl-
edge on previously observed instances of the task to infer reasonable parameteriza-
tions, adding a new dimension to its control scheme.

Statistical models allow us to represent the uncertainty that is inherent in the con-
crete environment that a robot is dealing with. While representing some specifics
about the entities in a particular environment, our models should mostly represent
general principles, which are to be applicable to arbitrary instantiations of a do-
main, i.e. arbitrary situations (involving varying numbers of relevant objects) as
they might occur in our environment. Therefore, first-order languages, which al-
low universal quantification and thus abstract away from concrete objects, are a
suitable basis for our models. In recent years, numerous approaches that seek to
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combine first-order representations with the semantics of probabilistic graphical
models have been proposed [11]. This combination addresses precisely the main
requirements in real-world domains.

In our table setting example, we would want a probabilistic model to accurately
represent the complex interactions between the participation of people in a meal,
the attributes of the meal, the utensils used by the participants, and the food that
is consumed. For any situation — involving any number of people, utensils and
meals — the model should indicate a reasonable probability distribution over the
set of possible worlds induced by the relevant atomic sentences, i.e., in this case,
instances of predicates such as takesPartIn, usesAnyIn and consumesAnyIn.

5.1 System Integration

Fig. 12: Coupling of the plan-based control mod-
ule (COGITO) and the probabilistic reasoning
module (PROBCOG)

The top-level architecture
that we implemented to link
our probabilistic reasoning
engine to the overall system
is shown in Figure 12. For
the sake of modularity, the
reasoning engine and the
robot controller that makes
use of it are realized as sep-
arate processes that interact
via remote procedure calls
(RPCs). Whenever the robot
control program is faced with a situation in which probabilistic inference is neces-
sary, e.g. an under-specified task, it queries the probabilistic reasoning system by
issuing a request consisting of the name of the model to use as well as a list of
evidence variables (taken from its knowledge base) and a list of query variables,
where the variables are simply logical ground atoms. The PROBCOG reasoner,
which manages a pool of probabilistic models, then processes the request by in-
stantiating the selected model for the given set of objects, running the inference
method, and finally returning the inference results in a reply. The robot controller
then processes the returned probabilities and uses them to parameterize its plans or
modify its control program in general.

As a simple example, consider again our example problem of setting the table.
Assume that in the controller’s knowledge base, we have been told that exactly three
people will participate in breakfast, namely Anna, Bert and Dorothy — members
of the family that are known to our model. To set the table, we need to know what
utensils will be required at which seat; therefore if we know what utensils people
will probably use and where they will sit, we have the information that we need.
Our problem thus translates to a probabilistic query as follows,

P(sitsAtIn(?p, ?pl, M), usesAnyIn(?p, ?u, M) | mealT(M, Breakfast) ∧ (Q1)
takesPartIn(P1, M) ∧ name(P1, Anna) ∧ takesPartIn(P2, M) ∧
name(P2, Bert) ∧ takesPartIn(P3, M) ∧ name(P3, Dorothy))

The query will return, for each person and place, the probability of the correspond-
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(a) Dependency structure (b) Fragment parameters

Fig. 13. Bayesian logic network for the table setting model (excerpt)

ing sitsAtIn atom, and, for each person and utensil type, the probability of the
corresponding usesAnyIn atom.

5.2 Representation Formalisms

Many representation formalisms that combine first-order logic or a subset thereof
with probabilistic graphical models have been proposed, some based on undirected
probabilistic graphical models, others on directed models. Markov logic networks
(MLNs) [25] are based on the former and are among the most expressive, for they
indeed support the full power of first-order logic. The expressiveness of MLNs
does come at a price, however, for not only is learning generally more problematic
[13], inference also becomes more expensive and is therefore less well-suited to
near-real-time applications. Nevertheless, we use them in cases where the added
expressiveness is key. Otherwise, we use a representation that is based on directed
graphical models: Bayesian logic networks (BLNs) [15], a sensible compromise
between expressiveness and tractability. A BLN is essentially a collection of gen-
eralized Bayesian network fragments which are applicable to a random variable
(ground atom) under certain circumstances and which collectively define a template
for the construction of a Bayesian network for any given set of objects/constants.
In addition, a BLN may define arbitrary logical constraints on the probability dis-
tribution in first-order logic, such that global dependencies between variables may
be adequately formulated. Combining these constraints with the ground Bayesian
network yields the full ground model, which is thus a mixed network with proba-
bilistic and deterministic dependencies [18]. Typically, if there are few hard global
constraints, inference in BLNs is much more efficient than inference in an equiva-
lent MLN.

5.3 Learning and Inference

For our models to be grounded in observations made in the real world, we support
learning methods. We assume that the structure of the model, i.e. a specification
of possible dependencies, is given by a knowledge engineer. For the table setting
model, a simplified causal structure of a stochastic process that might apply to
the domain is shown in Figure 13a. We can adequately translate such a structure
into either conditional dependencies (as in a BLN) or logical formulas (features of
MLNs).
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The actual PROBCOG learning stage then uses a training database containing a list
of ground atoms (atomic sentences that directly correspond to sensory observa-
tions) in order to learn the model parameters that most appropriately explain the
observations that were made. To obtain a training database, we collect data from
various sources and translate it into the logical format we require. For the purpose
of data acquisition, our Intelligent Kitchen is equipped with a multitude of sensors,
including RFID sensors (in cupboards, on tables and in gloves worn by kitchen
users), laser range scanners, and cameras. For the table setting model, the configu-
rations in which the table has been set can, for instance, be observed by an overhead
camera and RFID sensors. The actual generation of logical ground atoms for a set
of observations is then straightforward.

Learning algorithms that yield parameters from the gathered training data are based
on either maximum likelihood or MAP estimation. In MLNs, even learning needs
to be done approximately; pseudo-likelihood methods are usually used. In BLNs,
which make the causal structure of the model explicit, exact maximum likelihood
learning is particularly simple, as it essentially reduces to counting occurrences of
parent-child configurations in the data. Figure 13b shows an exemplary part of a
fragment of the table setting model indicating the conditional distribution of the
predicate consumesAnyIn(person, food, meal).

Once a model has been trained, it can be used to answer queries. We have rather
high demands on the reasoning capabilities of our system, because if the proba-
bilistic knowledge base is to be queried by a robot controller, it needs to produce
results within short periods of time. Yet the results should be approximately correct
nonetheless. Given the NP-hardness of probabilistic inference, we usually resort
to approximate inference techniques. For BLNs, the PROBCOG inference module
supports various sampling algorithms. For instance, in order to cope with highly
deterministic domains that feature a large number of hard constraints, we sup-
port SAT-based importance sampling techniques as well as other methods specifi-
cally developed for mixed networks, such as the SampleSearch algorithm [12]. For
MLNs, the only inference algorithm that has proved to produce accurate results in
real-world situations is MC-SAT [24], a Markov chain Monte Carlo algorithm.

As an example inference task, consider the query (Q1). In our model, it produced
the results listed in Figure 14a, which imply the configuration shown in Figure
14b when assuming for each person the most likely seating location and assuming
that usesAnyIn atoms with a probability over 0.05 should be considered as likely.
Notice that the results change considerably if we remove from the evidence the
identities of the three people (Figure 14c).

5.4 Integration with the Control Program

In order to integrate probabilistic inference into the plan-based controller, the plan
language was extended with a new language construct, likely-let. In analogy to the
Lisp special form let, it establishes a binding of variables to tuples of atoms and
the corresponding probabilities within the current lexical context, based on a set of
queries and a set of evidences.

Several applications of the resulting probability distributions are conceivable. For
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usesAnyIn(P1, Plate, M) 0.9981

usesAnyIn(P1, Cup, M) 0.9136

usesAnyIn(P1, Platter, M) 0.0000

usesAnyIn(P1, Bowl, M) 0.0347

usesAnyIn(P1, Glass, M) 0.0000

usesAnyIn(P1, Knife, M) 0.9981

usesAnyIn(P1, Spoon, M) 0.0347

usesAnyIn(P2, Plate, M) 0.9967

. . .

sitsAtIn(P1, Seat1, M) 1.0000

sitsAtIn(P2, Seat2, M) 0.7815

. . .

(a)

Cup

Knife

Plate

Cup

Knife

Plate

Glass

Spoon

Bowl

(b)

Cup

Knife

Plate

Spoon

Bowl

Cup

Knife

Plate

Spoon

Bowl

Cup

Knife

Plate

Spoon

Bowl

(c)

Fig. 14. Inference results

instance, decisions may be based directly on probabilities or we may be inter-
ested in a list of the most likely atoms to parameterize a plan. Therefore, likely-let
also provides support for post-processing returned probability distributions. When
querying seating locations, we require, for each person, a single location at which
to place the person’s objects, which is achieved by the application of an argmax
operator over the location probabilities for every person. The result of a query for
utensils on the other hand should be post-processed by a threshold operator, as we
want to place all the objects on the table where the usage probability is above a
specific threshold.

( likely-let
((places

:query
’( sitsAtIn ?person ?seating-location M)

:argmax ?person)
( utensils

:query ’(usesAnyIn ?person ?utensil M)
:threshold 0.05)

:evidence
’(( takesPartIn P1 M) (name P1 ”Anna”)

(takesPartIn P2 M) (name P2 ”Bert”)
(takesPartIn P3 M) (name P3 ”Dorothy”)
(mealT M ”Breakfast”)))

(...))

As an example, consider once again
(Q1). We query the seating locations
and the objects used by the partic-
ipants as shown to the right, ap-
plying suitable post-processing op-
erators (argmax and threshold) to
the results obtained as listed in Fig-
ure 14a. The plan is then carried out
simply by iterating over the match-
ing elements of the set generated by
combining the elements of places
and utensils.

As this example shows, probabilistic inference can provide a sound way of param-
eterizing under-specified plans and can furthmore provide the control framework
with general decision-making capabilities.

6 Experimental Results

We now provide a brief evaluation of the parts of our hybrid control architecture
for which an experimental, statistical evaluation is appropriate. To a large degree,
however, our architecture simply enables a robot system to perform tasks it was
previously unable to handle; thus a quantitive analysis is infeasible.
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6.1 Evaluation of the Import Procedure

The performance of the import procedure depends largely on the correctness and
completeness of different, partly external software components. In order to give
a more detailed evaluation, we not only examined the complete system but also
looked at individual modules.

A primary source of error is the syntax parser. Although the Stanford parser that
is used in this system is known to be one of the best of its kind, it still runs into
problems as sentences get longer. Another issue is that the large corpora available
for training PCFGs feature rather few imperative statements, which most of the
instructions we are dealing with are composed of. To better show the influence of
the parser on the recognition rate, we evaluated the system both with automatically
parsed syntax trees and manually created ones.

Another main issue affecting the recognition rate are missing mappings from synsets
in WordNet to the corresponding ontological concepts in Cyc. In the training set,
we manually added 72 mappings for actions, objects and adjectives. Finally, we
analyzed how many instructions are correctly transformed into the internal data
structures before being added to the knowledge base. In the following, “instruc-
tion” refers to one step of a “how-to”, i.e. one specific command.

Our training and test sets were made up of 88 and 64 instructions respectively, taken
from ehow.com and wikihow.com how-tos pertaining to household activities.
First, we trained the disambiguator on the training set with manually created parse
trees. Afterwards, we ran the system including the syntax parser on the same set
of how-tos. The results are shown in Table 2. With correct parse trees, the system
achieves a recognition rate of 82% on the training set and even 91% on the test
set before the ontology mapping and the transformation of the instructions into the
formal representation. The remaining 18% resp. 9% have either been recognized
incorrectly (missing object or preposition in the instruction) or not at all. The latter
group also comprises instructions that are not expressed as imperative statements
and, as such, are not supported by the current implementation. In both test runs,
errors caused by the syntax parser result in a significant decrease in the recognition
rate when switching from manually parsed to automatically parsed sentences (15
percentage points in the training set, 22 in the test set).

Training Set: aut. parsed man. parsed

Actual Instructions 88 100% 88 100%

Correctly Recognized 59 67% 72 82%

False Negative 29 33% 16 18%

False Positive 4 5% 2 2%

Test Set: aut. parsed man. parsed

Actual Instructions 64 100% 64 100%

Correctly Recognized 44 69% 58 91%

False Negative 20 31% 6 9%

False Positive 3 5% 6 9%

Table 2
Summary of the evaluation on instruction level; recognition rates before mapping the in-
structions to concepts in the knowledge base.

Table 3 shows the results of the translation into the formal instruction representa-
tion. In the training set, 70 of the 72 instructions which have been recognized in the
previous step could successfully be transformed. The two errors were caused by
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mappings of word senses to concepts that cannot be instantiated as objects in Cyc:
the concept PhysicalAmountSlot in the commands “Use the amount that...” and the
relation half in “Slice in half”.

Training Set: aut. parsed man. parsed

Actual Instructions 88 100% 88 100%

Import Failures 31 35% 18 20%

Incorrectly/Not recognized 29 94% 16 89%

Missing WordNet entries 0 0

caused Import Failures 0 0% 0 0%

Missing Cyc Mappings 0

caused Import Failures 0 0% 0 0%

Misc. Import Errors 2 6% 2 11%

Disambiguation Errors 0 0

Correctly imported into KB 57 65% 70 80%

Test Set: aut. parsed man. parsed

Actual Instructions 64 100% 64 100%

Import Failures 33 52% 28 44%

Incorrectly/not recognized 20 61% 6 21%

Missing WordNet entries 3 3

caused Import Failures 2 6% 2 7%

Missing Cyc Mappings 14 23

caused Import Failures 11 33% 20 71%

Misc. Import Errors 0 0% 0 0%

Disambiguation Errors 2 3

Correctly imported into KB 31 48% 36 56%

Table 3
Summary of the evaluation on knowledge base level. Recognition rates after mapping the
words to concepts in the knowledge base.

Test set of how-tos Instr. Level KB Level KB+maps

How to Set a Table 100% 100% 100%

How to Wash Dishes 92% 46% 62%

How to Make a Pancake 93% 73% 81%

How to Make Ice Coffee 88% 63% 88%

How to Boil an Egg 78% 33% 57%

Fig. 15: Evaluation of the import proce-
dure per how-to.

The results of the translation of the
test set show that two external com-
ponents are the main sources of er-
ror: 40% of the import failures are
caused by the syntax parser, since a
decrease from 61% to 21% of fail-
ures in the initial recognition step
can be observed when switching
from automatic parsing to manually created syntax trees. In this case, missing Cyc
mappings and WordNet entries are the main problem, causing about 78% of the
remaining errors.

An evaluation per how-to (Figure 15) shows that a reasonably large number of the
instructions can be recognized correctly. The last column contains the results after
having added in total eight mappings, including very common ones like Saucepan
or Carafe, which will also be useful for many other instructions. The generation of
a robot plan from the formally represented instruction is a rather simple translation
from Cyc concepts to RPL statements which did not produce any further errors.

6.2 Plan Optimization

As mentioned in Section 4.4, plans are optimized for performance after debugging.
The set of transformation rules necessary for optimization is very limited for pick-
and-place tasks, because most of the flaws are due to increased resource usage (e.g.
unnecessary repetitions). The following list informally shows the most important
transformation rules used in the optimization step:

• if the robot is to carry multiple objects from place P1 to place P2 then carry a
subset of the objects by stacking them or using a container;
• if the robot moves objects repeatedly to a temporary location, performs some

actions and moves the object back then move it once, perform all actions in
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between and move the object back after completing the actions.
• if the robot has to place objects at positions P1, . . . , Pn and P1, . . . , Pn are within

reach when standing at location L then perform the place tasks standing at loca-
tion L.
• if the robot carries an object o from place P1 to place P2 and it has one hand

free and there is another object to be carried from P1 to P2 then carry both at the
same time — one in each hand.

To test the performance improvement of transformational plan optimization, we
hand-coded a default table setting plan which places a cup, a plate and cutlery for
an arbitrary number of people on the table. The plan was carefully designed to be
highly general and robust in order to work in most possible kitchen environments,
but this leads to lower performance. We compared the default plan with 11 alter-
native plans generated by applying transformation rules starting form the default
plan.

The hand-coded plan was applied to different situations, in which the table was
to be set for a varying number of people in two different dining rooms, yielding
a number of scenarios. The corresponding experiments examine between 168 and
336 plan executions. Depending on the experimental setting, an average run took
between 5.4 min and 6.5 min. The total plan execution time for the experiments was
approximately five days.

persons kitchen table living-room table

A,T 23.9 % 30.1 %

T,D 39.4 % 45.3 %

T,S 30.2 % 36.9 %

A,S 31.5 % 33.4 %

A,T,S 24.5 % 34.8 %

A,T,D 29.5 % 39.5 %

T,S,D 34.6 % 42.4 %

A,T,S,D 32.0 % 42.7 %

Fig. 16: Summary of best plans show-
ing the performance gain achieved by
plan transformation in various scenarios,
where the performance measure was time
consumption.

Figure 16 shows the performance
gains (in percent) of the best plan
compared to the default plan of
the experiment. The gain is calcu-
lated by using the duration as per-
formance measure and ranges from
23.9% to 45.3%.

7 Conclusion

In this article, we have presented a
high-level control architecture that
synergetically integrates a number
of highly promising AI techniques
on top of a reactive planning system
in order to enable an autonomous
robot system to learn novel tasks,
execute them reliably and efficiently, and to deal with the uncertainty that gov-
erns the task domain. As indicated by our experiments, the transformation of web
instructions into executable robot plans is an elegent way of acquiring initial knowl-
edge about novel tasks. The transformational planning system that we presented
is capable of correcting potential flaws in imported plans by means of projection
and reasoning, and it can furthermore optimize plans for increased performance.
The incorporation of probabilistic reasoning capabilities enables the system to deal
with the underspecification of tasks, and provides general decision-making tools,
adding another dimension to the control architecture. We firmly believe that the
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combination of such methodologies is fundamental in achieving efficient, reliable
and adaptive behavior in robotic agents.
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