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Abstract— We present ROBOSHERLOCK, an open source
software framework for implementing perception systems for
robots performing human-scale everyday manipulation tasks.
In ROBOSHERLOCK, perception and interpretation of realistic
scenes is formulated as an unstructured information manage-
ment (UIM) problem. The application of the UIM principle
supports the implementation of perception systems that can
answer task-relevant queries about objects in a scene, boost
object recognition performance by combining the strengths
of multiple perception algorithms, support knowledge-enabled
reasoning about objects and enable automatic and knowledge-
driven generation of processing pipelines. We demonstrate the
potential of the proposed framework by three feasibility studies
of systems for real-world scene perception that have been built
on top of ROBOSHERLOCK.

I. INTRODUCTION

Robots for mobile manipulation of objects of daily use

need to be equipped with powerful perception capabili-

ties. A robot acting in a human household environment

needs to effectively and robustly perceive objects like cups,

plates, cooking pots, glasses, silverware pieces, packagings

of groceries, tools and utensils, electrical devices and many

more. All of these objects exhibit very different perceptual

characteristics, such as texture, monochromy, shininess, dull-

ness, shape, translucence, size or text – to name only a

few – or combinations of all of those. In addition, robots

are equipped with different kinds of sensors like RGB-D

cameras, monocular cameras or laser scanners and existing

perception routines are unequally well-suited to be applicable

to different kinds of sensory input. Recent research in robot

perception, however, has focused on investigating subsets

of those perception problems, and specialized perception

algorithms have been developed and tested in rather ho-

mogeneous and controlled environments in order to satisfy

the presumptions of the respective algorithm. Despite work

in individual subfields of robot perception that resulted in

tremendous progress in recent years by developing percep-

tion algorithms that handle particular subsets of the above-

mentioned problems with high accuracy, the ‘omni-potential’

perception routine still remains undeveloped and proficiently

perceiving wide varieties of heterogeneous objects in real-

world robotics applications remains challenging.

There is a huge gap between the perceptual capabilities

that robots performing human-scale manipulation tasks re-
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quire and the functionality today’s perception algorithms

provide robots with. These gaps exist in multiple dimensions:

1) There exists no single comprehensive perception algo-

rithm that shows promise in handling all of the different

perceptual characteristics of objects and the diversity of

tasks that a robot in human environments has to perform.

As an example, consider a robot that is to fill a drinking

mug with orange juice from a bottle. The bottle typically

is translucent, but it also has a textured label with a brand

logo and text stating that it contains orange juice, whereas

the drinking mug can be recognized mainly by its shape. As

another example, consider kitchen utensils, pieces of cutlery

or electrical devices, which consist of shiny metal parts and

parts made of plastic which are dull. Although there exist

sophisticated algorithms for dealing with particular subsets

of these perceptual characteristics, proficiently and robustly

handling all of them still goes beyond the capabilities of

today’s perception methods.

2) Robot perception must go beyond object categorization.

For perceiving objects of daily use with the purpose of

competently manipulating them, it is insufficient for a robot

to merely assign a class label to a particular region of

interest in the sensor data, but a wide breadth of purposeful

perceptual functionality is required. The robot has to detect,

localize, categorize, and reconstruct the objects it is seeing

and to decompose them into their functional parts. Consider

a robot that is to make pancakes, for instance. Pouring the

batter into the pan requires the robot to identify and localize

the opening of the bottle containing the batter, detect whether

or not it is closed by a cap, unscrew the cap if necessary,

and localize the center of the pan, where the batter needs

to be poured. Thus, robot perception systems need to be

able to answer queries about particular properties of objects

that must be known for successfully performing a task.

This makes perception for robots highly task-dependent and

knowledge-intensive.

In this work, we present ROBOSHERLOCK, an open source

framework for building perception systems for robotic agents

that are to perform human-scale manipulation tasks. RO-

BOSHERLOCK enables programmers to combine perception,

representation, and reasoning methods in order to scale the

perception capabilities of robots towards the needs implied

by general manipulation tasks. ROBOSHERLOCK supports

the implementation of perception systems that

. . . can be equipped with ensembles of expert perception

algorithms with complementary, similar or overlapping

functionality instead of relying on one particular per-



ception algorithm. ROBOSHERLOCK provides control

mechanisms and data structures to direct the algorithms

to synergistically cooperate, to communicate relevant

information, fuse their results and hence to combine the

strengths of individual methods.

. . . can be tasked. The robot control program can request

the perception system to detect objects that satisfy a

given description, ask it to examine aspects of the

detected objects such as their 3D form, pose, state, etc.

In this view, perception can be viewed as a question

answering system that answers the queries of the robot’s

control system based on perceived scenes.

. . . can enhance perception with knowledge and rea-

soning. In ROBOSHERLOCK, the robot can reason

about the objects to be detected and examined and the

respective task and environment context to make the

perceptual processes faster, more efficient and robust.

Knowledge processing also helps the system to interpret

the results returned by the perception algorithms and

thereby increase the set of perceptual tasks that can be

accomplished and it also enables the robot to specialize

perception tasks it has to solve in order to resolve

ambiguities in the perception data.

ROBOSHERLOCK has been designed with two major im-

plementational aspects in mind: (1) it does not replace any

existing perception system or algorithm but rather enables

easy integration of previous work in a unifying framework

that allows these systems to synergistically work together

and (2) new methods can be easily wrapped into ROBOSH-

ERLOCK processing modules to extend and improve existing

functionality and performance.

In order to provide these services and scale towards

realistic sets of objects, environments, and perceptual tasks,

ROBOSHERLOCK considers perception as content analyt-

ics in unstructured data, for which the groundwork has

been laid in [1]. Content analytics (CA) denotes the dis-

cipline of applying methods from the field of statistical

data analysis to large amounts of data in order to extract

semantically meaningful knowledge from those. The data are

considered unstructured since they lack explicit semantics

and structure. The paradigm of unstructured information

management (UIM) offers an implementational framework

for realizing high-performance CA systems. The perhaps

most prominent example of a UIM system is Watson [2],

a question answering system that has won the US quiz show

jeopardy!, competing against the champions of the show and

demonstrating an unprecedented breadth of knowledge that

has been acquired from automatic analysis of documents, and

the crucial ability to correctly judge it’s own competence in

answering questions. In UIM, pieces of unstructured data,

such as web pages, text documents or images are processed

by a collection of specialized information extraction algo-

rithms (annotators), and each algorithm contributes pieces

of knowledge with respect to its expertise. Thereby, outputs

of different algorithms are allowed to be complementary,

overlapping or even contradictory. Hence subsequently, the

collected annotations are rated and consolidated to come to

a consistent final decision.

The main contribution of this paper is the application

of the concepts of UIM analytics to the domain of robot

perception. We explain and show how these principles can

be used to design and realize robot perception systems

that are taskable and can scale towards broader ranges of

perception tasks and improve robustness and performance

by exploiting ensembles of possibly knowledge-enabled per-

ception experts. Compared to the original system presented

in [1], we further developed it by a adding more knowledge

based reasoning capabilities, examining object descriptions

using annotations as logical assertions and defining anno-

tator application rules. We present the capabilities of the

proposed framework in a kitchen scenario with objects of

daily use, and demonstrate its applicability and transferability

in a chemical experiment setting. Data and results obtained

are available in OpenEase[3], an open knowledge base for

researchers in AI and robotics1.

II. ROBOSHERLOCK OVERVIEW

In robot perception, raw sensor data (of arbitrary kinds)

can be regarded as unstructured documents. ROBOSHER-

LOCK creates object hypotheses for pieces of sensor data that

it believes to represent objects or object groups. Subsequent

perception algorithms (specialized routines called experts)

analyze these hypotheses and annotate their results as seman-

tic meta data to the hypotheses with respect to their expertise.

Further algorithms then test and rank possible answers to the

given perceptual task based on the combination of sensor

and meta data. To this end, the framework supports the

application of multiple algorithms to various objects with

different properties and combine the answers. It does so

by enabling perceptual capabilities to reason about which

method to apply to which perceptual subtask, by providing

means for the communication among expert methods, and

by providing infrastructure that supports reasoning about

how results of different experts should be combined. A key

aspect of the system is the seamless integration of knowledge

processing into the perception processes. In the following, we

will explain its key concepts in more detail.

A robot uses ROBOSHERLOCK to perceive the information

that it needs in order to accomplish its manipulation tasks.

The robot can formulate the perception tasks and issue them

to ROBOSHERLOCK in the following two ways:

1) detect obj-descr asks ROBOSHERLOCK to detect ob-

jects in the sensor data that satisfy the description obj-

descr and return the detected matching object hypothe-

ses. In this command format the robot can describe a

red spoon that it is looking for as (an object (category

spoon) (color red)). ROBOSHERLOCK returns a failure

if it cannot detect a matching object.

2) examine obj-hyp attributes asks the perception system

to examine a given hypothesis obj-hyp in order to ex-

tract additional information as requested by attributes

1www.open-ease.org
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Fig. 1: Example of a pipeline execution in RoboSherlock.

and add the information to obj-hyp. The examination

of object hypotheses enables the robot to perceive

information such as the exact pose of the object, its

3D model, or the parts of it which are needed for

competent manipulation but not yet included in the

object hypotheses.

Let us consider three example object detection tasks that

ROBOSHERLOCK can perform. The first one is to look for

something that can hold 1 liter of water:

(detect (an object
(category container)
(capacity (≥ 1 liter))))

This perception task is challenging because ‘container’

is an abstract category that subsumes a broad variety of

categories that vary widely in their visual appearance. In

addition, the capacity of an object is not directly observable

but must be inferred from the dimensions of the object.

Performing this perception task requires ROBOSHERLOCK

to combine perception with knowledge and reasoning.

The second perception task is to find a Kellogg’s corn-

flakes box on the table which can be stated as:

(detect (an object
(form cuboid)
(logo “Kellogg’s”) (text “cornflakes”)
(location (a location (on (an object (category table)))))

Here ROBOSHERLOCK has to employ different perception

methods, some for determining the shape of objects and oth-

ers for recognizing logos and reading the text. Alternatively,

if the robot already knows the Kellogg’s cornflakes box

beforehand it can learn the visual appearance of the object

and recognize it using learned visual features. While the

application of multiple methods can increase the robustness

of recognition methods it also introduces complications such

as handling the cases in which the results are inconsistent.

The third perception task is to look for the lid of the tube

that contains acid.

(detect (an object-part
(category lid)
(part-of (an object (category tube)

(contains (some stuff (category acid)))))))

To accomplish this perception task ROBOSHERLOCK has

to detect a specific part of a previously detected object.

ROBOSHERLOCK is designed to accomplish such per-

ception tasks in complex scenes that include objects with

different perceptual characteristics. To do so, ROBOSHER-

LOCK perceives objects taking the scene context into account

and employs different perception methods and reasons about

which methods to apply to which objects. ROBOSHER-

LOCK can use background knowledge to simplify perception

tasks, for example when the object it is looking for has

a salient distinctive characteristic, or in order to interpret

the perception results by inferring whether or not the object

could hold a liter of stuff. In order to improve robustness

ROBOSHERLOCK can also reason about how to combine the

results of different perception methods.

A. High-level View on ROBOSHERLOCK

Figure 1 shows the high-level organization of ROBOSH-

ERLOCK. Performing perception tasks starts with the robot

capturing images using different cameras (high-resolution

RGB, RGB-D, stereo cameras, or thermo camera) and other

sensors. The images together with data structures that com-

bine the images with meta data constitute the Common

Analysis Structure (CAS), the main data structure used by

ROBOSHERLOCK and its components.

After the initial CAS is created, ROBOSHERLOCK runs

object hypothesis generators on the images in order to detect

data pieces in the images that might correspond to objects

and object groups in the environment. In Figure 1 the object

hypothesis generators have detected raw point clusters that

are indicated by the colored bounding boxes. For each

hypothesis a designated data structure called SOFA (Subject

of Analysis) is created and assigned a system wide unique

name. SOFAs collect and organize all pieces of information

that different ROBOSHERLOCK components infer about the

respective object hypothesis.

After the SOFAs of the CAS are created, other RO-

BOSHERLOCK modules, called SOFA annotators, run on the

detected SOFAs, interpret the respective hypotheses, apply

vision algorithms to the corresponding image pieces, inter-

pret results, etc. The results of these interpretation processes

are then asserted as logical annotations to the SOFAs. For

example, a SOFA annotator might run a color classifier on

the image piece corresponding to the SOFA s and store
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Fig. 2: CAS of a kitchen table scene.

the recognized color c as an assertion color(s,c) in the

annotations of s.

The SOFA annotators of ROBOSHERLOCK fall into two

categories. First, general-purpose ones that run on every

detected object hypothesis. Second, perception task-specific

SOFA annotators that perform computations and image in-

terpretation methods that contribute to the accomplishment

of the given perception task.

Running general-purpose SOFA annotators, including

color classifiers, object size estimators, shape estimators,

logo detectors, text readers, etc. results in a small set of

facts for each SOFA. In the CAS (step 2) in Figure 1

the annotations of SOFA s0 (the ketchup bottle) include

the following assertions: color(s0,red), shape(s0,cylinder),

text(s0,curry), and logo(s0,Hela Ketchup). ROBOSHERLOCK

can make use of these logical assertions for selecting ap-

propriate perception methods, for equipping interpretation

methods with background knowledge, and for interpreting

the results of perception algorithms in context.

Task-specific SOFA annotators infer specific information

pieces about SOFAs. Typically, the robot does not care about

the volume of the objects it sees unless it is looking for

objects with volume constraints. In our examples above we

had the perception task to look for a container that can

hold 1 liter. This task triggers task-specific SOFA annotators

that are capable of checking whether observed objects are

containers and that can estimate the capacity of objects

based on their estimated sizes. Testing these properties is

done through the application of knowledge processing and

reasoning techniques which will be detailed in Section III-C.

III. CONCEPTUAL FRAMEWORK

The key concepts that ROBOSHERLOCK builds upon are

• the CAS with the SOFAs to be analyzed, which is

the common data structure and knowledge base of the

ROBOSHERLOCK system;

• the analysis engines (AEs) (SOFA generators and the

SOFA annotators) share and operate on the CAS by

generating, interpreting, and refining SOFAs; and

• the knowledge representation and processing mecha-

nisms that the analysis engines can use as resources for

reasoning about the objects and scenes they interpret.
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Fig. 3: SOFA of a ketchup bottle with annotations

The components work together according to the data

analytics information processing paradigm, which we have

discussed in our introduction. In this section we will describe

and explain these concepts in greater detail.

A. Common Analysis Structure (CAS)

The CAS is the data structure that is used by the compo-

nents of the ROBOSHERLOCK-based perception systems in

order to communicate with each other. Besides the SOFAs a

CAS contains:

• images the sensor data that are interpreted (e.g. RGB

or depth image);

• annotations (meta data), which represent information

about SOFAs that interpretation algorithms have in-

ferred; and

• a common type system that ensures that the different

components of the perception system share a common

vocabulary

Figure 2 depicts a CAS of a scene on a table as it is

produced by one of our ROBOSHERLOCK-based perception

systems. The SOFAs of the CAS are the individual point

clusters and parts thereof. The CAS also contains annotations

for each SOFA, which are represented as symbolic facts and

information about the underlying type system.

An example for a SOFA as a hypothesis of an object

that can be annotated with semantic meaning could be point

clusters on a table or regions of interest in an image. Figure 3

shows a SOFA that depicts a bottle, the SOFA includes

component SOFAs, namely the lid and the body of the bottle.

In ROBOSHERLOCK the annotations for SOFAs

are a set of logical assertions of the form

〈attr-name〉(〈sofa-id〉, 〈attr-val〉), where 〈sofa-id〉 is

the identifier of a SOFA, 〈attr-name〉 is an attribute of this

SOFA and 〈attr-val〉 the value for this attribute. For example,

the annotation shape(S0,cylinder) asserts that SOFA S0 has

the shape cylinder. Figure 3 shows the annotations for

the different object hypotheses (SOFAs) S〈UID〉 which

constitute the results of different perception AEs. UIDs

are globally unique identifiers to ensure consistency in

the knowledge base containing all SOFAs. Annotations

can be semantical (size, shape, color etc.) or numerical

(e.g., the VFH [4] shape descriptor). Numerical annotations

often serve as the basis for image interpretation (e.g.

classification), which in turn might result in semantic labels.

B. Analysis Engines and Annotators

AEs are the core processing elements of ROBOSHER-

LOCK. They share and operate on the CAS by generating,



interpreting and refining SOFAs. AEs can be considered as

being primitive or aggregate. Primitive AEs can be catego-

rized based on their capabilities into two kinds: The first

kind, called hypotheses generators analyzes artifacts and

generates SOFAs, and the second one, called annotators

annotates the SOFAs. Hypotheses generators are to find

regions in the raw data that might be of interest for the task

currently being executed.

Annotators further investigate SOFAs by generating new

and revising old annotations. To this end, they take the part

of the artifact that corresponds to the SOFA, transformations

and interpretations of it as their input. To perform their

computations in more informed manners they have also

access to the annotations of this and all other SOFAs.

Because annotators might employ heuristic interpretation

methods or are more or less reliable and accurate, the set

of annotations is allowed to be inconsistent or contradictory.

Inconsistencies and erroneous annotations can be handled

by subsequent reasoning and hypothesis testing and ranking.

ROBOSHERLOCK maintains book keeping information to

facilitate the informed resolution between conflicting annota-

tions. This book keeping information includes justifications

of annotations in terms of the name of the AE that generated

it and confidence values that some AEs return. A particularly

powerful method for resolving inconsistencies in ROBOSH-

ERLOCK is the application of first-order probabilistic reason-

ing described in Section III-E.

Aggregate AEs solve more complex tasks, by combining

primitive or other aggregate AEs and flow controllers, cre-

ating perception pipelines. They can be run sequentially, in

parallel, or flexibly, e.g. on-demand or event-driven in order

to annotate the data. A more detailed explanation about the

AEs used in ROBOSHERLOCK to solve perception problems

will be given in Chapter IV. Figure 1 shows an example

perception pipeline where the resulting CAS is passed to an

aggregate AE that consists of (1) a set of primitive AEs that

generate object and object group hypotheses and represent

them as SOFAs and (2) a set of annotators that interpret

and analyze these SOFAs in order to add informative and

semantic meta data to the SOFAs.

C. Knowledge Processing

ROBOSHERLOCK uses annotations in form of logical

atoms in order to be able to ask structured queries and

perform logical reasoning about annotations added by the

AEs. The main reasoning engine used in ROBOSHERLOCK is

based on SWI-Prolog, a general purpose logic programming

language providing bindings for the most common proce-

dural languages like C++, Java. AEs can be equipped with

Prolog programs, which consist of facts and rules. Relevant

annotations are automatically asserted as facts into the Prolog

knowledge base.

Semantic annotations make use of the terminology of

concepts and predicates of the KNOWROB knowledge

base [5], a comprehensive knowledge processing system for

autonomous robots. The use of KNOWROB concepts and

predicates ensures that ROBOSHERLOCK can make use of a

large body of knowledge about objects and relations between

them. This knowledge is valuable for informing perception

routines and specialize perception tasks in context-specific

ways as well as for interpreting the results of expert routines.

In ROBOSHERLOCK, we can, for example, state that an

object is a container if it is annotated with a category that is

a specialization of the concept ‘container’ as:

category(Obj,’container’) :-
category(Obj,Cat), subclass(Cat,’container’).

We can also equip the AE with a rule that allows it to

infer the volume of an object:

volume(Obj,Vol) :-
category(Obj,’container’), geom-primitive(Obj,’cylinder’),
radius(Obj,Radius), height(Obj,Height),
Vol = pi * Radius * Radius * Height.

Using the Prolog rules above an AE can detect containers

in a given scene that can hold at least 1 liter by issuing a

query of the form

object(Obj), category(Obj,container), volume(Obj,Vol), Vol ≥ 1.

The execution of a Prolog program is triggered by the query

of the AE. Logically, the Prolog engine tries to find a reso-

lution refutation of the negated query. If the negated query

can be refuted, it follows that the query, with the appropriate

variable bindings in place, is a logical consequence of the

program. In that case, all generated variable bindings are

reported to AE as an answer.

D. Reasoning about and composition of perception pipelines

Another important application of knowledge processing in

ROBOSHERLOCK is the context-directed application of AEs.

For example, we might formulate a set of rules that state

which kinds of objects a particular method applies to with

competence. We can do this by specifying rules such as

applicable(’Moped’,SOFA) :-
degreeOfTexturedness(SOFA,Degree), Degree ≥ 0.6,
distance(SOFA,robot-camera,Dist), Dist ≤ 1.5 m,

which specifies that the ‘Moped‘-AE is applicable if the

object has a certain minimum texturedness level and the

distance from which the object is perceived is not too high.

Although at the moment rules are only defined for a

limited set of AEs, the system can already deduce whether

or not particular annotators are needed for the perception

task to be successfully executed. This is important because

there are annotators which can be expensive in resources to

execute, and their application needs to be well balanced with

the projected information gain. It makes sense to execute

these AEs only in cases where their cost can be justified,

e.g. because the query specifically asked for it directly or

indirectly by requesting information specific to an AE, or

because other low-level features strongly suggest it (e.g.

when a reasoning engine feels the need to resolve ambiguity

with more expensive AEs).

E. Probabilistic Knowledge Representation and Reasoning

One of the key features of ROBOSHERLOCK is its ability

to benefit from the combination of multiple specialized per-

ception algorithms and systems, which are integrated in form



of AEs wrapped around these methods. Since AEs are being

applied to SOFAs independently of each other, their outputs

may be complementary, overlapping or even contradictory.

It is therefore important to have means available to combine

annotations of different experts in a meaningful way in order

to come up with a final consistent ensemble result. RO-

BOSHERLOCK has an integrated engine for learning of and

reasoning about probabilistic first-order knowledge bases,

which we use for consolidation of inconsistent annotations.

In [6], we have shown how first-order probabilistic models,

such as Markov logic networks (MLNs), can be used to

combine the strengths of different perception algorithms and

the object recognition performance of perception systems can

be significantly boosted.

IV. IMPLEMENTATION

Perception algorithms in ROBOSHERLOCK can assert facts

into the knowledge base and reason about its own capabil-

ities. In Figure 4 we present some of the commonly used

AEs that are implemented, and their respective logical as-

sertions. The majority of these AEs wrap around perception

algorithms from PCL [7] or OpenCV [8] that are commonly

used in robotics, most of which can be assigned to one of

the two categories of AEs that we described earlier.

A. Hypothesis Generation

Object hypothesis generators are tasked with generating

SOFAs. In most cases these are specialized segmentation al-

gorithms in order to find possible locations of items, and deal

with objects that exhibit different perceptual characteristics

such as ordinary objects of daily use, flat objects, pieces of

paper or small shiny objects such as knives and forks.

These methods are complemented with mechanisms to

combine their results in a consistent manner including the

following ones:

• attention mechanisms that detect points of interest in

pixel coordinates in order to create regions of interest

(points and extents) in the camera frame.

• image segmentation algorithms (e.g. color-based) can

generate masks or region maps, referencing the respec-

tive part of the image.

• point cloud segmentation relying on supporting planar

structures can generate index vectors.

Note that most of these types can be converted between

each other e.g. projecting a point cluster from a point cloud

into a camera image, or transforming an image region to a

grasping pose in robot-local coordinates. This allows us to

retrieve the camera image region of interest corresponding

to a 3D point cluster, enabling the combination of image

analysis annotations and point cloud processing. The AEs

that are most commonly used in ROBOSHERLOCK are

RANSAC based plane segmentation to find the supporting

plane that objects can lie on, Euclidean clustering in 3D

space to find 3D clusters and a color based segmentation

in order to find flat objects. Although these AEs implement

very simple examples of segmentation we will show how

they complement each other and come up with better object

AE Category AE Name Logical assertions

SOFA-Generators plane-detector plane(sofa)

flat-object-detctor cluster(sofa)

pcd-cluster-detector cluster(sofa)

MOPED[9] cluster(sofa)

High-frequency AEs color color(sofa,col)

size size(sofa,s)

location location(sofa,s)

primitive-shape[10] shape(sofa,s)

Low-frequency and event-

driven AEs

goggles text(sofa,txt)

logo(sofa,lg)

Object recognition LINE-MOD[11] name(sofa,id)

Object categorization MOPED category(sofa,cat)

MLN category(sofa,cat)

Fig. 4: Some of ROBOSHERLOCK’s Analysis Engines.

hypotheses. Having better segmentation algorithms (e.g. ones

that deal with cluttered scenes) would furthermore improve

the capabilities of the system.

B. Object Annotators

Object annotators are the subclass of AEs that interpret

SOFAs and generate annotations. In general, annotators wrap

existing perception algorithms and result in numerical or

symbolic values that are linked to the SOFA.

As we described in Section II-A annotators can be either

general-purpose ones or task-specific. The AEs shown in

Figure 4 are of the former kind. This is because task-specific

annotators are domain specific, and do not wrap around any

existing algorithm. An example of a task-specific annotator

would be one that finds the center of a pan, since this is

where the robot would like to pour the batter, or deduces

which container can hold a certain amount of liquid.

General-purpose annotators can be further categorized

based on the type of perception algorithms they implement.

For instance, the location annotator uses a 3D semantic map

of our environment [12] to annotate an object cluster with

a semantically meaningful object location (e.g. “on top of

counter top”). The PCL Feature extractor can process any

point cluster (with estimated normals) and compute any open

source 3D feature implemented in the point cloud library

PCL (VFH, Spin images, RIFT, SHOT etc). Color, size or

primitive shape annotators compute symbolic values for the

SOFAs they are processing. All of the aforementioned AEs,

we consider as high-frequency AEs, purely because of their

execution times (order of milliseconds).

On the other hand there are annotators like the one

wrapping Google Goggles, a web service and smart phone

app allowing the analysis of an image. Google Goggles gen-

erates a highly structured list of matches including product

descriptions, bar codes, logo/brand recognition, OCR text

recognition or a list of similar images, but being a web

service, response times for analyzing all SOFAs are in the

order of seconds, hence are considered as low-frequency

annotators.

Some annotators wrap around existing perception frame-

works, namely BLORT[13], Moped and Line-mod. These are

object recognition or categorization engines, and are worth

executing, when the task involves an object that has the

respective model.



Fig. 5: Surgical utensils on a table: GreyScale (left), SOFAs

(center) and annotations (right)

V. EXPERIMENTS

Since the contributions are neither individual algorithms

nor a monolithic system, but a framework, and since it covers

a considerably wider scope than previous work, it is hard to

quantitatively assess the quality of the proposed approach.

It is also hard to compare it to existing perception systems

used in robotics, since it builds on top of these systems, and

offers developers the possibility to wrap their framework in

ROBOSHERLOCK.

We therefore showcase the capabilities of ROBOSHER-

LOCK on three tasks of a robotic agent performing different

experiments: (1) pick and place of surgical utensils (2)

a robot performing pipetting in a chemical laboratory (3)

reasoning about objects and their properties.

Execution of each task is shown in the video accompany-

ing our paper2.

A. Task 1: Pick and Place Surgical Utensils

The first task involves a robotic agent picking up surgical

tools, and putting them in a bowl. This task is solved by a

single aggregate AE that generates the SOFAs and annotates

them by assigning a class label and a 3D pose.

The input image, the generated SofAs, and their respective

annotations are shown in Figure 5. Generating the SOFAs

was done using a color based segmentation, class labels were

assigned by using a nn-classifier trained on Hu-moments[14]

for the objects that were used in the experiment. Because of

the flat nature of the objects the 6 DOF poses of the objects

were calculated using the camera parameters.

B. Task 2: Chemical experiment

The robot task was to pick up the pipette, mount a tip

on it, get some solution from the bottle and release it into

one of the tubes found in the rack. Finally the robot should

release the contaminated pipette tip into the trash box. The

challenges for perception here are (1) not all objects can

be perceived using RGB-D sensors (see Fig. 6, right, hence

ROBOSHERLOCK uses a combination of color segmentation

and point cloud clustering) and (2) some of the perception

tasks needed are based on common sense knowledge: the

opening of a container is the top part of an object.

There is no one unique solution to perceive all of the

objects, and their parts, but having several expert algorithms

combined with knowledge processing significantly increases

the success rate of finding the relevant items on the table.

Detecting the labels of the objects and estimating their

2http://youtu.be/mGlPBzXtnBw

Fig. 6: Pipetting scene as seen by the robot. Left: RGB, Right:

PointCloud

3D pose, as in Task 1, is not sufficient for the successful

execution of pipetting. We precisely need to identify where

the pipette tip needs to enter the bottle, or find the tubes in

the rack.
To successfully accomplish this task we made use of

ROBOSHERLOCKs reasoning capabilities, formulating rules
like:

fitCircle(Obj,Radius) :-
category(Obj,’container’), object-part(Obj,Opening),
geom-primitive(Obj,’circular’),
radius(Opening,Radius),

which deduces the radius of the circle that needs to be fit in

order to find the opening on top a container, or the holes in

the rack where tubes can be found.

C. Task 3: Reasoning about objects and their properties

One of the key aspects of ROBOSHERLOCK is its ability

to handle complementary, overlapping or even contradictory

annotations. In the last task, the system is to successfully

identify objects of daily use, where all of our annotations

from Fig. 4 were run on the table top scene. We used a

Markov logic network to combine annotations while taking

into account the co-occurrences of objects in the environment

as reported in [6]. The annotations of the single perception

algorithms as well as the prediction are presented in Fig. 7.

VI. RELATED WORK

There are a lot of works oriented at creating perception

libraries which are a collection of task specific algorithms,

e.g. PCL, OpenCV and the STAIR Vision Library [15].

The perception tasks that such a robot has to accom-

plish go substantially beyond what is supported by current

perception libraries and frameworks. Frameworks, mostly

based on middle-ware like ROS, such as SMACH [16])

or REIN [17] have targeted the ease of program develop-

ment but the problems of boosting perception performance

through more powerful method combination has received

surprisingly little attention. An early example of a robotic

perception system was described by Okada et al. [18], where

a particle filter based integration of multiple detectors and

views was achieved. The probabilistic fusion of different

results corresponds to a simple rule ensemble, i.e. one that

is not trainable. Similar methods have been employed for

semantic mapping approaches [19], [20]. More recent work

on general frameworks for robotic agents [21], [22] approach

the problem in a much broader sense, thus do not address

the specific needs of robot perception.

Existing perception systems usually consider the case

where a database of trained object is used to match it with



Fig. 7: SOFA s with annotations and the MLN prediction

sensor data. Even more, many systems focus on individual

algorithms that only work on objects with specific char-

acteristics, e.g. point features for 3D opaque objects [23],

visual keypoint descriptor based systems like MOPED [9] for

textured or [24] for translucent objects. ROBOSHERLOCK is

capable of incorporating all of these different frameworks

and combine their results meaningfully to build on the

strengths and mitigate the weaknesses of the individual

methods.

VII. CONCLUSIONS

We have presented ROBOSHERLOCK, an open source

software framework for implementing perception systems

for robots performing human-scale everyday manipulation

tasks. We have shown how the principles of unstructured

information management can be used to design and realize

robot perception systems that are taskable and can scale

towards broader ranges of perception tasks and improve

robustness and performance by exploiting ensembles of pos-

sibly knowledge-enabled perception experts. The resulting

system, in terms of richness of information, can outperform

state-of-the-art robot perception systems as they are used

as components, ROBOSHERLOCK can reason about which

AEs to apply to which SOFAs, can integrate the results of

the individual AEs, and employ knowledge and reasoning

for interpreting perception results. Capabilities of ROBOSH-

ERLOCK have been presented in a kitchen scenario with

objects of daily use and demonstrated its applicability and

transferability in a chemical experiment setting.
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