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Rico Belder+, Daniel Beßler*, Sami Haddadin#, Alexis Maldonado*,

Nico Mansfeld+, Thiemo Wiedemeyer*, Roman Weitschat+, Jan-Hendrik Worch*

Abstract— Many future application scenarios of robotics
envision robotic agents to be in close physical interaction with
humans: On the factory floor, robotic agents shall support their
human co-workers with the dull and health threatening parts
of their jobs. In their homes, robotic agents shall enable people
to stay independent, even if they have disabilities that require
physical help in their daily life – a pressing need for our aging
societies. A key requirement for such robotic agents is that they
are safety-aware, that is, that they know when actions may hurt
or threaten humans and actively refrain from performing them.

Safe robot control systems are a current research focus in
control theory. The control system designs, however, are a bit
paranoid: programmers build “software fences” around peo-
ple, effectively preventing physical interactions. To physically
interact in a competent manner robotic agents have to reason
about the task context, the human, and her intentions. In this
paper, we propose to extend cognition-enabled robot control
by introducing humans, physical interaction events, and safe
movements as first class objects into the plan language.

We show the power of the safety-aware control approach in
a real-world scenario with a leading-edge autonomous manipu-
lation platform. Finally, we share our experimental recordings
through an online knowledge processing system, and invite the
reader to explore the data with queries based on the concepts
discussed in this paper.

I. INTRODUCTION

Imagine a robotic agent working as an assistant in a

hospital, helping with tasks such as tidying up or arranging

surgical instruments on a tray prior to operations. While the

robot holds a scalpel to put it onto the tray, a human co-

worker suddenly steps into its reach – Figure 1 depicts a

similar scene. As robot system designers, we would like

the robot control program to identify this as a potentially

dangerous situation, and react by a) pointing the sharp blade

of the scalpel away from the human, and b) stopping or

drastically reducing speed and stiffness of its motion.

After halting, the arm of the robot blocks the view of the

human onto the surgical instruments on the table. As she is

looking for an instrument on the table, she steps even closer

and tries to push the arm of the robot out of view. The robot

control program should react to this strong but purposeful
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Fig. 1. Safety aware robotic agents know when actions have the potential
to hurt or threaten humans and they actively refrain from performing them.
To build such an agent, we extended the conceptual apparatus of cognition-
enabled robot control with first-class representations of humans, motions,
and safety events. Here we visualize from the logged belief state of the
robot, which postures it believed itself and the human co-worker had, where
it saw objects, and which motion it performed when a human entered its
workspace.

collision by switching to gravity compensation mode to yield

to the intentions of the human.

Consider a further episode: The robotic assistant tries to

hand over a retractor to its human co-worker. To make the

tool easier to grasp, the robot control program should orient

the instrument handle-first towards the human. During the

hand-over the motion control system of the arm reports a

slight collision. The robot control program should expect

small collisions at the end of hand-overs when human and

robotic hands are closer, and ignore them or expect them as

indication of a successful hand-over.

We call a robotic agent capable of exhibiting such com-

petent behavior safety-aware. A safety-aware agent knows

when an action has the potential to hurt or threaten a human

co-worker, and it actively refrains from performing this

action. We believe that, first and foremost, any robot which

shall work in close proximity or direct contact to humans

has to be safety-aware. Additionally, it should also naturally



employ physical interaction when appropriate or necessary,

i.e. not paranoically avoid physical interactions per design.

Current robotic manipulation systems already contain the

blocks necessary to build safety-aware robotic agents. State

of the art motion controllers can move fast, slow, with high

or low impedance, detect collisions, and change into other

control modes within a single control cycle [1]. Besides

this, there are numerous vision algorithms for detecting and

tracking human bodies in color and depth images [2], [3],

[4]. Robot control programs lack, however, basic knowledge

about tasks, humans and motions to act competently and

safely in open human environments.

In this paper, we present an extension to the framework of

cognition-enabled robot control [5] in which we represent the

human co-worker, the robot’s motions, and the safety-related

physical interaction events explicitly as first-class objects in

the plan language. These new programming concepts allow

us to build robotic agents which can reason about their

motions and observed human co-workers in terms of related

safety events. At the end of the paper, we show the efficacy

of our safety-aware approach to robot control in a real-

world experiment with a leading-edge autonomous mobile

manipulation platform performing a pick and place tasks with

surgical instruments while at the same maintaining the safety

of its actions w.r.t. to an interfering human co-worker.

II. CONCEPTUAL APPROACH

Let us now introduce the foundations of safety-aware

control, the cognition-enabled control framework, and sketch

how we will extend the framework to facilitate safety-aware

control.

A. Conceptual Foundations

The key issue in safety-aware physical human-robot in-

teraction is that plans have to specify how the robot should

perform its motions in a safety-aware manner. This requires

the robot to (1) perceive safety-relevant entities and events

and parameterize its motions safely and (2) reason about

safety aspects and their consequences on the robot’s phys-

ical actions. While the former aspect is typically (partly)

addressed in the research field of control theory, the latter is

a core problem in artificial intelligence (AI). We will briefly

introduce the concepts of both fields needed to realize safety-

aware robotic agents.

1) Control Systems Engineering Concepts: Control theory

provides the conceptual apparatus to mathematically model

and analyze the properties of dynamical systems. Using these

tools, one can build feedback controllers which specify the

signals to the motors of the robot to achieve a desired

physical movement.

A typical motion controller for a robot continually moni-

tors its dynamical state, compares the sensed state with the

desired motion trajectory, and issues commands to minimize

the error between the sensed and desired motion trajectory.

The dynamical state of the system is modeled in terms of

state variables typically including the joint positions, joint

torques, and their derivatives. The control system might also

Fig. 2. Left: Control approaches specify motions using Cartesian end-
effector attractor frames and repelling spherical and planar force fields.
Right: Symbolic approaches logically represent objects, humans, and robots
w.r.t. background knowledge. Actions axiomatically relate declarative pre-
conditions, e.g. the gripper is empty and the clamp is on the table, to their
effects, e.g. the clamp is held in the gripper. In this paper, we address how
to bridge this representational gap in the context of safety-aware robotic
agents.

express its state w.r.t. to reference frames attached to parts of

the robot (like the end-effector) or other relevant objects. The

range of frameworks for expressing desired external motion

trajectories ranges from basic forward and inverse kinematics

to advanced formalisms like iTaSC [6].

Using the deep mathematical models of the kinematics

and dynamics of the robotic manipulator programmers can

often ensure the stability and sometimes even the optimality

of their controllers.

While the conceptual apparatus of control engineering is

very expressive in terms of formulating movements it does

not allow us to talk about the context in which are motions to

be performed, e.g. the presence of a human, and the effects

of movements on object and agent states.

2) AI Models of Action Control: Symbolic approaches to

action control, on the other hand, enable the programmers to

specify tasks in terms of objects that are to be manipulated

and used, the desired effects and unwanted side effects. They

allow to specify actions such as “give the mug to the person”,

which can be translated into “place the mug into the open

hand of the person from above, and release on contact”.

As a consequence, the robot can reason about what it is

doing and why. In short, symbolic approaches typically em-

ploy abstract models of actions that represent actions in terms

of their preconditions and effects. However, these models

abstract away how the agent shall perform the respective

movements in order to accomplish the desired effects and

avoid the unwanted ones. Thus, symbolic representations

of actions are unable to specify fine-grained motions or

reactions and parameterize motions to achieve the desired

and prevent the unwanted effects. Symbolic approaches do

not deal with the stable, controllable, and optimal execution

of robot movements.

Table I and Figure 2 contrast aspects of action control

easily communicated within control engineering with respec-

tive representations from an AI point of view. We feel that



Control Theory Aspects AI Aspects

Physical measurements: Higher abstraction:
• Position, velocity, • Object semantics
acceleration, torque • Physical effects
• Joint and Cartesian space • Context conditions
• Frames on robot and objects

Example: Example:
”Move the End-Effector ”Put the clamp into the
+10cm in Z with” open hand from above,
maximum velocity and acc.” release on contact.”

TABLE I

COMPARISON OF THE TYPICAL TERMS USED FOR EXPRESSING

CONCEPTS RELATED TO ROBOT MOVEMENT FROM THE POINT OF VIEW

OF CONTROL THEORY AND ARTIFICIAL INTELLIGENCE: BOTH

RESEARCH COMMUNITIES SEEM TO HAVE BUILD MAINLY DISJUNCT BUT

COMPLEMENTARY CONCEPTUALIZATIONS OF ACTION CONTROL.

both research fields have developed conceptualizations of

robotic action control with few overlaps but which promise

to complement each other rather well.

3) Combining AI and Control Engineering Methods to

Action Control: In our approach, we couple the symbolic and

the control layer directly by means of shared data structures

that specify movements as first-class objects: External force

disturbances of the motion controllers are directly related to

safety events which are further annotated with the intents

and poses of the human and robotic agents. Furthermore,

the tracked body parts of the human correspond to repelling

virtual environment which the motion controllers try to avoid.

In previous work [7], [8], [9] we followed a similar ap-

proach to bridge the gap between the AI and motion control

modules of our robot control systems. We use a constraint-

based movement specification as an interlingua for control

and reasoning which is grounded in the functional properties

of the objects used to perform actions. Constraint-based

movement specifications can serve as fine-grained, modular,

and transparent partial movement descriptions that can be

interpreted by locally optimizing controllers to produce high-

performance motion.

In short, we believe that the key to building AI systems

for robotic agents which are aware of the effects of their

movements is to have deep representations for the various

parameters exposed by motion controllers. To avoid shallow

integration, we start our research with shared common rep-

resentations.

B. Cognition-enabled Robot Control

In our work, we follow the approach of cognition-enabled

robot control [5]. This paradigm of building the control

programs of robotic agents rests on three core principles.

Principle 1: We specify the behavior of our robotic agents

in a high-level programming language which supports con-

currency and reactivity – so-called plans. As a result, we can

compactly express behavioral patterns, e.g. safety monitoring

such as the one shown in algorithm 1, because our plans

take advantage of language constructs for describing parallel

task execution, naming, starting, stopping, suspending, and

restarting of tasks.

Algorithm 1 Compact specification of concurrent and reac-

tive behavior in cognition-enabled control: A robotic agent

shall perform a motion, while in parallel ensuring basic

safety by monitoring the distance of the human agent.

1: (def-plan safely-move (motion human robot)

2: (pursue

3: (:tag motion-task

4: (retry-after-suspension

5: (perform robot motion)))

6: (:tag human-tracking-task

7: (perceive human))

8: (:tag distance-monitoring-task

9: (whenever (human-close-to-robot)

10: (with-task-suspended (:motion-task)

11: (wait-for (human-far-robot)))))))

Principle 2: We employ reasoning mechanisms to decide

on the course of action execution and action parametrization

during the execution of plans. In our experience, decision

making during task execution either decides on which action

to perform next, or how to perform a given task. Algorithm

2 shows examples of inferring action parametrization and

action activation using – among others – beliefs over the

states of the human and robotic agents in lines 5 and 9,

respectively. We believe that stating such control decisions

as execution time reasoning tasks increases both the re-

usability (as programmers can program against descriptions

of objects, agents, events, or actions) and reactiveness of our

robot control programs.

Algorithm 2 Framing control decision as reasoning tasks

handled by external knowledge bases increases both the gen-

erality and reactivity of plan-based behavior specifications.

Using continuously updated data, virtual knowledge bases

can decide whether (line 9 and 11) or how (line 5) to perform

certain actions.
1: (def-plan safely-move-kb (action human robot)

2: (pursue

3: (:tag motion-task

4: (retry-after-suspension

5: (perform robot (infer-params action))))

6: (:tag human-tracking-task

7: (perceive human))

8: (:tag distance-monitoring

9: (whenever (infer (is-close human robot))

10: (with-task-suspended (:motion-task)

11: (wait-for (infer (is-far human robot)))))))

Principle 3: We semantically annotate the plans of our

robotic agents which facilitates designing modular plans,

manipulation of robot control program at run-time, and

reasoning about past executions. As we do not exploit the

benefits of this principle in the remainder of this paper, we

refer the reader to paper [5] for a more detailed discussion.

In the subsequent chapters we try to show how the

principles of cognition-enabled robot control help us design

robotic agents which exhibit human-safe behavior and under-

standing of safety-related action aspects. Specifically, prin-

ciple 1 allows us to augment safety-agnostic task execution

with parallel safety-monitoring. Additionally, by following



principle 2 of formulating run-time decisions as questions

to reasoning mechanisms, e.g. safety stops or choosing

appropriate velocity and stiffness thresholds etc., we have to

make the safety-related semantics of these choices explicit

to the control system.

C. Safety-aware Cognition-enabled Control

In order to enable robotic agents to exhibit competent

behavior including physical interactions with humans, we

need to make robotic agents safety-aware. To this end, we

propose to introduce three additional categories of first-class

objects into the programming language of cognition-enabled

robot control: human co-workers, robot motions, and safety-

relevant events.

Fig. 3. A human acting in the workspace of the robot and an exemplary
internal representation in the cognition-enabled plan. Body parts being so
far away that the robot cannot physically interact with them are colored in
yellow and close safety critical body parts in red.

Humans: The robotic agent has to continually monitor the

environment to watch out for approaching humans. The robot

maintains a dynamic kinematic model of the humans in its

workspace where the links in the kinematic model are labeled

with identifiers of the respective body parts, e.g. hands,

elbow, head, and link structures such as the right arm. The

body parts themselves are represented as spheres which are

automatically tracked using a human pose tracking system

(see Section IV for details, and Figure 3 for visualization). As

a result, the robot has the means to build up the semantics

of the various human body parts. During a hand-over, for

instance, it is OK for the robot to approach the human hand

with its own hand, while it is virtually never OK for any

robot body part to approach the human head.

Robot motions: The robot motions are parameterizable

symbolic descriptions with attractors, stiffnesses, and limits

for speed and accelerations. Automatically-triggered safety

reactions and virtual repelling objects are also part of the

robot motion representations. As these match the commands

accepted by the safety-aware motion controller (compare

section III), the task executive of the robotic agent may

directly specify how its arms shall perform movements –a

prerequisite for competent behavior control.

Safety events: The safety events are descriptions of situ-

ations such as detection of a new human, a human coming

close to the robot, a registered external force, or a safety

reaction automatically activated by the motion controllers.

More complex events can also be constructed out of other

events, e.g. the human hand coming very close to the robot

hand and registration of a slight external force in the same

robot arm. Events are automatically described and sent to the

cognition-enabled control system where concurrent event-

directed sub-plans are triggered as reactions.

These first-class object descriptions – humans, safety

events, and parameterizable motions – are not only data

structures which the task executives passes to control rou-

tines for parameterizing actions or which it receives from

perception modules as feedback. Additionally, they are also

representations which reasoning components can combine

with context information concerning objects and scenes in

order to cooperate with humans more competently.

D. Software Framework

goals reactions repellors

safety aware motion controller
humans objects

perception system

robot knowledge bases

estimation logging projectionontologies

'raw' and system-specific feedback

semantic interpretation and resolution 'raw' and

system-

specific

goals

task executive with concepts as first-class citizens

objects

locations

human safety eventrobot motion

Fig. 4. Architecture of a safety-aware robotic agent: Domain-specific
robot knowledge bases interpret the robot’s efferent and afferent raw
information, effectively creating the semantic interpretations which make up
the conceptual apparatus of the task executive: First-class representations of
humans, robot motions, and safety events.

A safety-aware cognition-enabled robot control system

consists of four components (see Figure 4). Let us introduce

them by starting at the bottom of the architecture and going

up. Our cognition-enabled robot control system recruits raw

feedback from both the perception system (Section IV) and

the safety-aware motion controller (Section III). Domain-

specific robot knowledge bases log the raw data, and offer

semantic interpretation of the information via on-demand

queries. Such knowledge bases are coined virtual knowledge

bases, and we refer the reader for more details on the

paradigm behind them to [10]. Every time new raw feedback

is available, the task executive triggers semantic queries to

fill representations, directs the flow of control accordingly,

employs further reasoning to disambiguate its goal, and sends

the next raw commands to the controller.
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Fig. 5. Raising the level of abstraction when programming safety-aware robotic agents: Motion controllers model movements in terms of attractors,
impedances, virtual repellors, safety strategies, etc. instead of using joint torques and positions. Task executives need to share these motion representations
and connect them to descriptions of humans, objects, and events to predict and avoid dangerous force interactions.

III. SAFETY-AWARE MOTION CONTROL

A safety-aware robotic agent has to use its sensors and

actuators such that it achieves its goals while ensuring

the safety of its human co-workers. State-of-the-art robotic

manipulators accept joint torque commands τ d at high

frequencies, and provide feedback in terms of measured joint

q and torques τ equally fast. The motion of the links of the

manipulator will cause various force interactions F between

body parts of the robotic agent, the human co-worker, or any

object in the environment. It is those force interactions that

can cause damage to humans. Here, we outline how to raise

the level of abstraction from a motor-centric representation

of actions to symbolic descriptions which explicitly consider

humans, objects, motion, and events, as depicted in Figure 5.

We believe this level of representation is essential to predict

and control robot-object-human force interactions.

The safety-aware motion controller BEASTY [11] wraps

joint and Cartesian impedance control schemes with vari-

ous safety features. For instance, programmers can specify

velocity and acceleration limits, virtual repelling walls and

spheres, or safety strategies for stopping with an impedance

controller or the motor brakes in case of unexpected colli-

sions. Through its new features, this controller effectively

raises the level of abstraction for motion control.

Algorithm 3 A symbolic description of an action to place

an object at a location. Additional motion constraints, e.g.

to avoid a human or point any dangerous parts of the object

away from the human, extend it with safety commands. One

can also specify which safety strategies the controller shall

use in case of detected events, e.g. ignore contact events.

1: (def-plan safely-place-obj (obj loc human robot)

2: (let ((place-action

3: (an action

4: ‘((type place) (acted-with ,obj) (at ,loc)

5: (motion-constraints

6: ((avoid ,human)

7: ((point away)

8: (acted-with (dangerous-parts ,obj))

9: (acted-on ,human))))

10: (safety-strategies

11: ((contact ignore)))))))

12: (safely-move-kb place-action human robot)))

However, we want to enable programmers to specify the

desired behavior of robotic agents at the level depicted

in Algorithm 3: Symbolic action descriptions which use

concepts like objects, locations, events, or humans, and list

desired or undesired effects as further motion constraints.

The safety-aware task executive CRAM [5] resolves the

inherent ambiguity of action descriptions at runtime using

virtual knowledge bases. On-demand disambiguation allows

the robotic agent to exhibit behavior which generalizes to

new execution contexts [12]. Mapping desired and unde-

sired action effects onto specific motor commands for given

contexts (and back) is one of the main components in

human motor control [13]. We believe building safety-aware

robotic agents will also rely on the successful development

of reasoning mechanisms which performing these mappings.

The reasoning mechanisms of knowledge bases for safety-

aware motion controllers have to make various safety deci-

sions while keeping overall consistency. They shall position

attractor frames and select velocity thresholds in order to

place a particular object at a given location. Furthermore,

they have to handle geometric constraints, e.g. add a repelling

wall in front of a human to avoid touching her, or alter the

attractor frame to point all dangerous object parts away from

the co-worker. Finally, these knowledge bases need to specify

impedance values to ensure non-violent contacts when plac-

ing an object, but also safety strategies to use in case of light

contacts or strong collisions, etc. Consistently and correctly

making these safety decisions relies on computational models

which are subject to future research.

Knowledge bases for safety-aware robotic agents and

motion controllers need to share common representations.

Consider as a counter-example, the 3T architecture [14]

which decoupled task executive and motion control through

a software layer. In such a setup, it is impossible to build

predictive models of motion controllers as their capabilities

are hidden behind an interface. As a result, knowledge bases

cannot connect motion commands to effects through. Hence,

we think it is necessary to have deep models of motion

controllers based on shared representations to build the task

executives of safety-aware robotic agents.



IV. KNOWLEDGE-ENABLED PERCEPTION

Capabilities to perceive both static and rigid objects and

dynamic and deformable humans is a necessary prerequisite

for building safety-aware robotic agents which shall act in

open real-world environments. Hence, robots need to be

equipped with sensors capable of delivering high quality

and high frequency data, and algorithms that can reliably

interpret this data. From an image processing point of view

detecting humans and objects require significantly different

approaches. In numerous applications one-shot perception

suffices for detecting objects and their poses in the environ-

ment. On the other hand when a human enters the robot’s

working area it needs to be tracked continuously. For a

single perception system to handle this diversity it needs

to be highly reconfigurable and adaptable to the task it is

executing, be that the detection and tracking of humans or

simply identifying possible locations of objects.

In previous work [15] we introduced ROBOSHERLOCK, a

perception framework that builds on top of the Apache Un-

structured Information Management (UIM) Architecture [16]

and is designed to enable the integration of knowledge-

based reasoning about the environment the robot operates in.

Historically, UIM is used predominantly in natural language

processing. The general idea of UIM is to have multi-

ple expert algorithms that analyze and annotate the input

data and combine these experts into processing pipelines.

These properties make it an ideal framework to combine

results from different sources, and allows for task dependent

pipeline adaptation.

Algorithm 4 A simple perception plan instructing ROBOSH-

ERLOCKto continuously track humans. The task executive

binds the stream of percepts to a fluent which other plans

can use and react to.
1: (def-plan human-tracking

2: (let ((human-fluent (make-fluent)))

3: (perform (an action

4: ‘((type track) (a human)

5: (bind-fluent ,human-fluent))))

6: human-fluent))

Regarding safety-aware robotic agents there is a need for

continuous tracking of humans in the workspace shared by

the co-workers. The task executive of the robot will use

ROBOSHERLOCK to get the information about its environ-

ment that is needed to safely interact with humans. For

instance, everytime the robotic agent needs to know about

close humans it can either on-demand query the perception

system for a specific frame as stated in [15] or instruct

ROBOSHERLOCK to continuously inform it about perceived

humans (see Algorithm 4). In streaming mode, the task

executive binds the incoming percepts to fluents which other

plans can react to.

If ROBOSHERLOCKcan perceive humans one might want

to extend its capabilities to also estimate whether humans are

about to perform specific actions. Describing a perceptual

event in which the human is reaching for the same surgical

instrument the robot wants to currently grasp is possible

Fig. 6. The intention analyzer states that the human most probably is about
to reach for the rake.

with the first-class concepts of safety-aware robotic agents.

Algorithm 5 shows an abstract version of a description

of such a perceptual action. Figure 6 depicts the output

of ROBOSHERLOCKfor this query with object restricted to

surgical instruments of type rake.

Algorithm 5 An action description to detect an event in

which a given human tries to grasp a given object.

1: (an action ‘((type detect)

2: (event ,(an action ‘((type grasp)

3: (actor ,human)

4: (acted-on ,obj))))))

Or, the robotic agent was asked to hand over the scalpel.

Now, its task executive can query the perception system to

perceive the blade of a scalpel in order to grasp it at the

correct point and hand it over such that the handle of the

scalpel is oriented towards the human:

Algorithm 6 An action to perceive the blade of a scalpel.

1: (an action

2: ‘((type perceive)

3: (acted-on ,(an object-part

4: ‘((type blade)

5: (part-of ,(an object

6: ’((type scalpel)))))))))

Querying ROBOSHERLOCK like this adapts the basic

pipeline such that the necessary experts will be added and

the answer of ROBOSHERLOCK will contain the information

that were asked for. This adaption can be either permanent

or only for next frame that is processed.

V. EVALUATION

A. Prototypical Safety-Aware Robotic Agents

We recorded three real-world interaction experiments with

a human co-worker and a leading-edge mobile manipulation

platform to show the power of the concepts of safety-aware

cognition-enabled control.

In the first experiment, the robotic agent performs repet-

itive free-space motions while ensuring the safety of the

human. In case the human gets too close the robot will

suspend its motion. Furthermore, it will react to strong



collisions with a stop and subsequently switch into grav-

ity compensation mode. You can find a recording of this

experiment at http://youtu.be/OYiLTJ8YCPc. The

task executive will restart the main program once neither

the robot arm reports a collision nor the perception system

detects a human intrusion.

The second experiment shows the capabilities of the

robotic agent to perceive, pick and place surgical instruments

from a table. The task executive is instructed to place all

instruments which it perceives that are not bowls into the

bowl. Additionally, the safety features demonstrated in the

first experiment are also active. As a result it is possible for

a human co-worker to step into the workspace of the robot,

interrupt it, and re-arrange the tools. We shared a recording of

this experiment at http://youtu.be/M5jwRmjk4ZM .

Finally, we performed a similar experiment to the second

one with a later prototype of our safety-aware robotic agent

(see video http://youtu.be/2SIWTH8bwU0). Again,

the robot shall place all surgical instruments into the bowl

while ensuring the safety of the human co-worker. In addition

to performing its task and complying with two co-workers

entering and re-arranging its workspace, the task executive

logs its symbolic and sub-symbolic belief state into a knowl-

edge base for later reconstruction and analysis. This allows

developers and other software agents to inspect and debug

the behavior of the safety-aware robotic agent.

B. Open Research

While performing the final evaluation experiment we

recorded extensive log data to allow reconstruction of the

experimental run. Using our recently developed and pre-

sented online knowledge processing framework OPENEASE

[17] we share this data with the general public. We in-

vite you, the readers, to visit our OPENEASE website at

www.open-ease.org to get an even better impression

of the quality and quantity of representations our safety-

aware robotic agents employ and which reasoning tasks these

support.

Fig. 7. The OPENEASE [17] online knowledge processing system allows
reviewers and readers to independently analyse the data logged in our
experiments. Semantic queries using the descriptions of objects, humans,
motions, and events show how safety-aware robotic agents could make sense
of their low-level percepts using these concepts.

Once you’re on the OPENEASE website, please register

and login using your username and password. On the sub-

sequent screen, please open the interactive environment by

selecting the newest knowrob daemon. Load the experiment

associated with this paper by selecting ”SAPHARI/Review-

2015” on the top right, and clicking on the link ”Knowledge

Base” on the top left.

The following interface holds a list of sample queries in

natural language on the left. Once you click on a query,

OPENEASE produces the Prolog equivalent of each query

in the query dialog. Instruct the system to evaluate the query

by pressing the return key. To get a first impression of

the sample queries and the logged data, please evaluate the

instructions in the suggested order. Note, the first queries

load and initialize the database. You can reset your session

by logging out and into OPENEASE. Feel free to explore

the analysis tool and discover details we have not outlined in

this paper. If you experience technical difficulties using the

system with your browser of choice, please consider trying

it with a recent version of Firefox.

VI. RELATED WORK

Kulic and Croft present early work on safe human robot

interaction in [18]. The basic ideas is to introduce a function

which quantifies the joint human-robot configuration w.r.t.

the potential of hurting the human. A planner employs

this danger function to minimize the risk of the interac-

tion between human and robot. In subsequent work, the

authors show how this approach translates to building real-

time motion controllers by essentially integrating the danger

function into the potential function which the controller shall

minimize [19]. Explicit and semantically rich representations

of the human, the task at hand, the objects both human

and robot are handling or desired physical interaction were

outside of the scope of [18], [19].

Alami et. al. present another framework for planning of

safe human-robot interaction both for navigation [20] and

manipulation [21]. They coin the term of a human aware

planner which ”must not only elaborate safe robot paths,

but also plan good, socially acceptable and legible paths”

[20]. Simplified speaking, their human aware agents reason

whether regions of space are accessible or visible to human

co-workers and also have representations for human comfort

when handing over an object. They introduce and use the

powerful of concept of perspective taking to build their

planning systems. Direct physical interactions, however, are

neither treated by the symbolic reasoner nor by the motion

controllers.

Ragaglia et. al. [22] present a state-of-the-art safety-aware

industrial robotic agent architecture which also integrates

safety-aware motion control software with visual perception

of humans and objects. However, as they employ a high-mass

and non-compliant robot arm which may exert dangerous

forces their executive does not consider preparing for or

reacting to physical interaction with human agents. Instead,

they extend standard motion controllers with algorithms

which evade human contact, and build an agent system



which context-sensitively chooses the appropriate avoidance

strategy, similar in approach to [19].

Eventually safety-aware robotic agents need access to

knowledge bases which provide the necessary background

information over the characteristics and consequences of

physical interactions between humans and robots. Behrens

and Elkmann [23] argue convincingly that ”only compre-

hensive collision tests with live test subjects lead to verified

limit values” for human-robot collisions, and present test

methodology, similar in fashion to our work in [24].

VII. CONCLUSION

In this paper we have extended the conceptual framework

of cognition-enabled control to the domain of safety-aware

robotic agents. The framework enables the task executive

of the robot to consider both the task as well as the

safety of human co-workers in its control decisions. The

main difference to typical AI-based architectures such as

the 3T architecture [14] is that the control layer is not

decoupled from the high-level control through an additional

software layer. Rather, key concepts for specifying safety-

aware control, including a model of the human co-worker,

the safety-relevant events, and the robots movements are

explicitly represented in the high-level plan language. This

enables the robot to adapt its movements in a context-

directed manner through symbolic reasoning and thereby

make full use of the robot’s low-level motion and perception

capabilities. We have shown the power of the safety- aware

control approach in a real-world scenario with a leading-

edge autonomous manipulation platform. Furthermore, we

have shared recordings of our experiments through the online

knowledge processing system OPENEASE.
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