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Abstract— Analytic modeling, imitation, and experience-
based learning are three approaches that enable robots to
acquire models of their morphology and skills. In this paper, we
combine these three approaches to efficiently gather training
data to learn a model of reachability for a typical mobile
manipulation task: approaching a worksurface in order to
grasp an object.

The core of the approach is experience-based learning. For
more effective exploration, we use capability maps [20] as
analytic models of the robot’s dexterity to constrain the area in
which the robot gathers training data. Furthermore, we acquire
a human model of reachability from human motion data [17]
and use it to bias exploration. The acquired training data is used
to learn Action-Related Places [16]. In an empirical evaluation
we demonstrate that combining the three approaches enables
the robot to acquire accurate models with far less data than
with our previous exploration strategy.

I. INTRODUCTION

To acquire models of its capabilities and limitations, a
robot has several options: 1) Analysis: a designer specifies
explicit analytic models for the robot; 2) Imitation: the
robot learns models by observing the behavior of humans
3) Experience-based Learning: the robot learns models by
observing its own interaction with the world in trial-and-
error exploration. Each of these approaches have specific
advantages and drawbacks, which we consider in the context
of a typical task from mobile manipulation: determining base
positions from which grasping an object will likely succeed.
The articulated B21 robot we use for this task, as well as its
simulation in Gazebo, is depicted in Fig. 1

Using analytical models of the robot and the world is
still the dominant approach to manipulation, and “when the
world’s state is known and consists of rigid body motion, it’s
hard to imagine something better” [9]. For instance, robot
kinematics are well-understood, and a wealth of methods
and algorithms are available to determine if an object is
reachable, i.e. if the end-effector can be brought into a posi-
tion where the object can be grasped. However, considering
kinematics alone does not address practical issues such as:
What happens if the state estimation yields uncertainties? Or
if the target object is not within the field of view? Or if the
robot has a limited set of controllers that cannot reach to all
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positions? Such questions become crucial when performing
everyday manipulation tasks, such as navigating to a work
surface in order to fetch a cup.

Humans perform such manipulation tasks routinely and
efficiently, and seem to take all these practical issues into
account effortlessly. Acquiring a model by observing human
behavior can be an alternative to explicit analytic models.
This imitation approach drastically reduces the need for
exploration. Of course, the robot’s morphology is assumed
to be similar enough to that of the human, in order to make
such models portable between them.

Fig. 1. Left: Our B21 mobile robot grasps a cup during a public
demonstration. Right: Gazebo model of our real robot.

To tailor the model to its own skills, a robot should
consider its own experience that arises from trial-and-error
exploration of the environment. Using experience-based
learning guarantees that the models are grounded in actual
interaction between the robot and the world. Unfortunately,
gathering data is often expensive, and the time required to
learn an accurate model can be prohibitively long.

Analytic model 
  (Capability Maps)

Learned model 
  (Experience-based Learning)

Model of human
  (Observation-based learning)

Theoretically
unreachable Table

Target
object

Fig. 2. Three ways of acquiring a model of appropriate base positions for
manipulation.

In this paper, we combine the aforementioned approaches
to gather data to efficiently learn areas in which positioning
the base will lead to successful grasping of objects, as



depicted in Fig. 2. The core of the work is experience-based
learning, in which the robot navigates to different positions,
and observes whether grasping a target object succeeds or
fails from these positions. An example of randomly sampled
base positions from which grasping succeeded or failed is
depicted to the left in Fig. 3.
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Fig. 3. Learning a concept of action-related place by generalizing over
observed experience with machine learning. Green dots mark successful
executions of the navigate-reach-grasp action sequence, while red dots mark
failures.

Within this experience-based learning approach, we trans-
form our previous random sampling into more goal-directed
exploration by 1) constraining the search space with a
capability map [20], which is a compact analytic model
of the robot’s reachable workspace; 2) guiding exploration
by imitating observations of humans performing a similar
task [17]. Combining experience-based learning, imitation
and analytic models enable robots to exploit their respective
advantages, and quickly gather relevant experience. The
robot then generalizes over this experience using machine
learning techniques. This yields a so-called action-related
place (ARPLACE), which is a probability map that maps
robot base locations to grasp success probabilities [16], as
depicted to the right in Fig. 3.

The main contributions of this paper are: 1) Bounding
robot exploration with theoretical kinematic limits, given by
the capability map of the robot; 2) Evaluating the use of
human motion data to guide exploration; 3) An empirical
evaluation of the effect of these exploration strategies on the
accuracy and speed of the learning process; 4) Deriving a
concept of action-related place from the acquired data.

The rest of this paper is structured as follows. In the
next section, we discuss related work. We describe how
capability maps are computed, and how human data is
acquired in Section III and IV respectively. In Section V, we
describe how the analytic model and the human data are used
to improve exploration for our experience-based learning
approach. Learning more general models of action-related
place from the resulting data is discussed in Section VI.
An empirical evaluation is presented in Section VII, and we
conclude with Section VIII.

II. RELATED WORK

Okada et al. denote a good base placement for grasping
a spot [13]. Different spots are defined for different
tasks, such as manipulating a faucet, a cupboard, and a
trashcan. In their work, spot information is hand-coded.
Berenson et al. deal with the problem of finding optimal

start and goal configurations for manipulating objects in pick-
and-place operations [3]. They explicitly take the placement
of the mobile base into account. As they are interested
in the optimal start and goal configurations, instead of a
probabilistic representation, this approach does not enable
least-commitment planning. Diankov et al. use a model of
the reachable workspace of the robot arm to decide where
the robot may stand to grasp an object and to focus the
search [7]. However, uncertainties in robot base position
or the object are not considered, and can thus not be
compensated for.

Recently, similar methods to the ones presented in this
paper have been used to determine successful grasps, rather
than base positions for grasping. For instance, Detry et al. de-
termine a probability density function (PDF) that represents
the graspability of specific objects [6]. This PDF is learned
from samples of successful robot grasps, which are biased
by observed human grasps. However, this approach does not
take examples of failed grasps into account. As we shall see
in Section VI, the distance between a failed and a successful
grasp can be quite small, and can only be determined by tak-
ing failed grasps into account. Our classification boundaries
in Section V are similar to Workspace Goal Regions [4],
except that our boundaries refer to base positions, whereas
in [4], they refer to grasp positions. Also, we generalize
over these boundaries with a Point Distribution Model, and
use it to generate a probabilistic concept of successful grasp
positions.

Kuipers et al. [11] present a bootstrapping approach that
enables robots to develop high level ontologies from low
level sensor data including distinctive states, places, objects,
and actions. These high level states are used to choose
trajectory-following control laws to move from one state
to another. Our approach is exactly the other way around:
given the manipulation and navigation skills of the robot
(which are far too high-dimensional to learn with trajectory-
following control laws), learn places from which these skills
(e.g. grasping) can be executed successfully.

Learning success models is a form of pre-condition learn-
ing. In robotics, the focus in pre-condition learning is on
grounding pre-conditions in robot experience. For instance,
‘Dexter’ learns sequences of manipulation skills such as
searching and then grasping an object [8]. Declarative knowl-
edge such as the length of its arm is learned from experience.
Learning success models has also been done in the context
of robotic soccer, for instance learning the success rate of
passing [5], or approaching the ball [15]. Our methods extend
these approaches by explicitly representing the region in
which successful instances were observed, and computing
generalized success models from these regions.

III. CAPABILITY MAPS

In this section, we describe how capability maps [20]
model the reachable workspace of a robot arm. In this paper,
we use a B21 robot equipped with two 6-DOF PowerCube
lightweight arms from Amtec Robotics, and parallel grip-
pers [2].



(a) (b) (c)

Fig. 4. (a) A sphere inscribed into the cube; (b) Exemplary frames for a
point on the sphere; (c) Valid inverse kinematics solutions on a sphere.

First, the theoretically robot arm workspace is enveloped
by a cube, and then subdivided into equally-sized cubes. A
sphere is inscribed in each cube, and n points are uniformly
distributed on this sphere (Fig. 4 (a), (c)). Frames (Fig. 4
(b)) are generated for each point on the sphere and serve as
the target tool center point (TCP) for the inverse kinematics
of the robot arm. The normal to the sphere at a point
determines the z-axis (blue arrow) of the TCP frame. The
orientation of the x- and y- axis is sampled equidistantly. If
a solution is found for the specific frame then the frame is
reachable, as visualized by a black line perforating the sphere
at the corresponding point. The sphere diameter was chose
empirically as a trade-off between memory consumption and
being small enough so that the reachability substructure does
not change.

The spheres visualize the reachability for a region and are
therefore called reachability spheres. The reachability index
D is the percentage of the points on the sphere that are
reachable [20]. Fig. 5 shows examples of reachability spheres
and corresponding values of D for the used robot arm.

D=low D=middle D=high

Fig. 5. Spheres with different reachability indices D.

The reachability sphere map is the aggregation of all
spheres. This data structure can be used to gather statistics
about the workspace, as well as to perform planning. It thus
describes the capabilities of robot arms. Furthermore, this
model can be used to visualize and inspect the orientation-
dependent reachability across the workspace, and to approx-
imate the shape of the robot arm workspace. The distribution
of the reachability index D throughout the workspace is
depicted in Fig. 6. The reachability sphere map is cut along
two different planes. For reference the direction of the z-axis
of the first link is shown as a gray arrow. In the blue region
the reachability index is highest. In Fig. 6, the blue area is
unfortunately useless for manipulation, as the robot is either
in collision with itself or the environment if it tries to make
use of it. For the arm used in this work, the reachability index
is relatively low throughout the workspace, with Dmax=52%.

Fig. 6 is a visualization of the question: given the position
of my base, which positions can I reach with my end-
effector? In this paper, we use the capability map to answer

Fig. 6. The model of the PowerCube arm and the reachability index D
across the workspace.

the ‘inverse’ question: given the position of the target object,
and therefore the desired position of my end-effector, from
which base positions can I achieve this end-effector position?
In Fig. 7, the answer to this question is visualized for a
specific target object position.
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Fig. 7. Valid robot placements given a specific object position, determined
using the capability map.

Summarizing, the capability map is an analytic model of
the robot kinematics, and an upper bound on reachability.
We shall use this upper bound to constrain exploration for
experience-based learning in Section V-A.

IV. HUMAN ACTIVITY DATA

We observe humans in a sensor-equipped kitchen en-
vironment while performing tasks similar to the mobile
manipulation task of our robot. Video data from four ceiling-
mounted cameras is used as input to a markerless motion
capture system [1]. The system is capable of tracking human
manipulation actions with a 51 DOF articulated human
model, as depicted in the left and central image of Fig. 8.
Tracking is unintrusive and unconstrained, enabling the hu-
mans to perform as natural as possible. The video data
is complemented by object detections by Radio Frequency
IDentification (RFID) sensors, e.g. when placing a cup on
the table.

To use the data to guide exploration, the system has to
select relevant human poses from the continuous stream of
tracked motions. First, the observed positions are loaded into
a knowledge processing system and clustered with respect
to their Euclidean distance. These clusters are represented as
“places” in the knowledge base. Then, based on the RFID
tag detections, the system learns a mapping from action
properties (in our case an object being manipulated and



Fig. 8. Left: Tracking a human placing a cup on the table using our
markerless fullbody tracker. Center: Playback of the action trajectory to
visualize the recoded data. Right: The circle in the front corresponds to the
learned place for action “place a cup on the table”.

its position) to human “places”. Given such a model, it is
possible to either obtain a place for an action (like a place
for picking up a cup), or to find the most probable action
given an observation. The right image of Fig. 8 gives an
example of learned action places in our knowledge base,
with the circle in the front marking places where humans
were standing when putting objects onto the table. A more
detailed description of the knowledge processing system and
the acquisition of action models as abstract specifications of
action-related concepts is given in [18].

Summarizing, the human activity data is a model of
places from which humans perform manipulation actions.
In Section V-B, we demonstrate how this model is used to
guide exploration.

V. GUIDING EXPLORATION

In this section, we first describe the default hand-coded
exploration strategy used in our previous work [16], and then
demonstrate how analytic models and imitation - capability
maps and the human data respectively - are used to improve
this exploration.

The default approach is to define a large rectangular area
relative to the cup positions, and sample uniformly within
this area. The robot is always oriented in the direction to
the cup, as our controller can currently only deal with this
relative positioning between cup and robot. The size of the
rectangular area was essentially our generous estimation of
the theoretical limits of the robot’s reachability. Fig. 9(a)
depicts 300 training examples that were gathered for one
cup position using this approach.

To generalize over these examples, we compute a clas-
sification boundary around the successful samples using
Support Vector Machines (SVM). We used a Gaussian kernel
with σ=0.03, and cost parameter C=20.0. Fig. 9(d) depicts
the percentage of correctly classified examples over time,
depending on the number of examples available for training
the SVM. This measure was computed on a separate test set,
which contained 150 additional examples. As expected, the
accuracy of the model increases quickly in the beginning,
but levels off as more examples become available.

A. Exploration with capability maps

The exploration strategy that uses capability maps also
samples within the same rectangle, but immediately discards
any positions from which the target is deemed unreachable.

Querying the capability map for reachability is done by
computing the pose Ptarget of the target object relative to
the origin of the robot’s manipulator. Because the origin of
the manipulator is also the origin of the capability map,
Ptarget can be used directly by the capability map to compute
whether the target object is reachable from the sampled
position. Therefore the capability map determines in which
of the equally-sized cubes Ptarget is located. For the resulting
cube it is investigated if the inscribed sphere has solvable
sphere points. If this is the case, the target object can be
theoretically reached from the sampled base position. Oth-
erwise the target object is unreachable. Using this approach,
132 out of 300 examples (44%) are thus excluded from
the data that was used by the default exploration strategy.
Fig. 9(a) and Fig. 9(b) visualize the reduction of required
training examples. Note that there are many failed examples
within the capability map. This is because the capability
map only considers the reachability of a position, given
arm kinematics; the failed examples are caused by collisions
with the table, the fact that the robot only approaches the
table perpendicularly, and the restrictions of our vector-field
controller. Through experience-based learning, we refine the
theoretical upper bound to take these practical restrictions
into account. Because the discarded positions do not influ-
ence the classification boundary computed by the SVM, a
model with the same accuracy can be learned with only 56%
of the data. This is demonstrated by the graph in Fig. 9(d).

B. Exploration with human data

In Fig. 9(c), the area from which humans reach for the
object lies almost completely within the area from which
the robot successfully grasps. Therefore, we use the human
data to bias the exploration during experience-based learning.
That is, we start exploring in the region where humans stand
when grasping, and incrementally explore from there.

Fig. 10 depicts the histogram of the distances of success-
ful and failed robot grasp attempts to the convex hull around
the human data. The image suggests that our approach is
effective. Examples that lie in the convex hull have a distance
of 0. Above a distance of approximately 0.3m from the
human data, the robot does not succeed at grasping the
object, although our default strategy still samples almost half
of the examples beyond this distance.

We have used this histogram to implement a simple ex-
ploration strategy. First of all, the robot samples only within
the convex hull enclosing the human data. Then, it samples
within areas that are 5cm, 10cm, . . . away from the convex
hull, as depicted to the left in Fig. 10. At each increment, the
histogram is regenerated with the novel data, which contains
successful and failed grasp attempts, as in Figure 10 (right).
As soon as there are no more successful samples in the last
histogram bin, data gathering is halted. In this example, this
is the case after 6 increments corresponding to a distance of
0.325m to the convex hull enclosing the human data.

For an objective comparison, we use the same samples as
in the default strategy. The failed examples which are never
considered with this strategy (140, which is 47% of the data
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(a) Default exploration.
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(b) Exploration with CapMaps.
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(c) Exploration with human data.

Number of training examples

P
e
rc
e
n
ta
g
e
 c
o
rr
e
ct
ly
 c
la
ss
ifi
e
d

0 50 100 150 200 250 300
70

75

80

85

90

95

100

H
um
an
 d
at
a

D
ef
au
lt

C
ap
. m
ap
s

(d) SVM accuracy over time.

Fig. 9. (a)–(c): Data used in the exploration phase. In these figures green squares with a black border are positions from which the target cup was
successfully grasped. Red circles represent failed attempts. Examples discarded in the different exploration strategies are depicted as black dots. (d): The
number of correctly classified examples on a separate test set, depending on the size of the training set, for each of the exploration strategies.
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Fig. 10. Left: the human data, and the data gathered by the robot. The
boundaries represent isolines of equal distance to the convex hull around
the human data. Right: the histogram of the distances of the grasp attempts
of the robot to this convex hull.

used in default exploration) and the percentage of correctly
classified test-examples as more training-examples become
available are depicted in Fig. 9(c) and 9(d) respectively.

The exploration algorithm just described is quite simple
and has some disadvantages. For instance, it could never
discover multi-modal distributions of successful examples if
failures lie in between. However, within the scope of this
paper, it is our goal to demonstrate that human data can in
principle be used to bias and speed up robot exploration,
not to provide the most complete and accurate algorithm to
actually perform the exploration.

VI. GENERALIZING REACHABILITY: ARPLACE

A reduction from 300 to 132 or 140 examples might,
at first, not seem to be a dramatic improvement. However,
learning a SVM classification boundary for only one cup
position is not very general. Therefore, we gather data and
learn classification boundaries for 12 different cup positions,
and generalize over them using a Point Distribution Model1.

1This section is described in more detail in [16]; we summarize it here
to demonstrate that the specific classification boundaries can be used to
construct more general models.

As we shall see in Section VII, using capability maps and
human data reduces the total number from 3600 to 2213 and
2034 respectively, which saves executing over 1000 action
sequences.

A. Generalized Success Model
After having gathered data for 12 different cup positions,

depicted to the right in Fig. 11, we learn the classification
boundary for each of them by training a SVM. Fig. 11
depicts the resulting classification boundaries for different
configurations of task-relevant parameters, i.e. 12 different
target cup positions. These have been learned from the data
gathered with the default strategy. As we saw in Fig. 9, the
boundaries acquired by using the other exploration strategies
are exactly the same, or very similar. In Section VII, we
compare the difference between these models.

From the classification boundaries, it becomes clear that
the cup can be grasped from a larger area if it is closer to the
edge of the table, i.e. the area from which reaching succeeds
is different in each column. The transformation along the
edge of the table should theoretically lead to exactly the same
boundaries in each column, but as different data is sampled
for each cup position, there are slight differences.

With these 12 classification boundaries, the robot can
predict successful and failed grasps for 12 different cup
positions. The next step is computing a so-called Point
Distribution Model (PDM), that enables the robot to interpo-
late between these boundaries, and also compensates small
differences between them.

As input a PDM requires n points that are distributed
over the contour. We distribute 20 points equidistantly over
each boundary, and determine the correspondence between
points on different boundaries by minimizing the sum of the
distances between corresponding points, while maintaining
order between the points on the boundary.

Given the aligned points on the boundaries, we compute
a PDM. Although PDMs are most well-known for their use
in computer vision [19], we use the notation by Roduit et
al. [14], who focus on robotic applications. First, the 2D
boundaries are merged into one 40x12 matrix H, where the
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Fig. 11. Classification boundaries for 12 cup positions, visualized with the
black cup in each of the 12 graphs. To save space, the table on which the
cup is placed is only shown in the right-most graphs.

columns are the concatenation of the x and y coordinates
of the 20 points along the classification boundary. Each row
represents one boundary. The next step is to compute P,
which is the matrix of eigenvectors of the covariance matrix
of H. Given P, we can decompose each boundary hk in
the set into the mean boundary and a linear combination of
the columns of P as follows hk = H + P · bk. Here, bk
is the so-called deformation mode of the kth boundary. The
deformation modes are stored together in the matrix B. By
inspecting the eigenvalues of the covariance matrix of H,
we determined that the first 2 components already contain
96% of the deformation energy [16]. Therefore, we use only
the first 2 deformation modes, without losing much accuracy.
This is the Point Distribution Model.

The advantage of the PDM is not only that it substan-
tially reduces the high dimensionality of the initial 40D
boundaries. It also allows us to interpolate between them
in a principled way using only two deformation parameters.
The PDM is therefore a compact, general, yet accurate
model for the classification boundaries. The final step of
model learning is to relate the specific deformation of each
boundary (contained in B) to the values of the task-relevant
parameters (like the x and y coordinates of cup position)
that are varied during data collection. Since the correlation
coefficients between the first and second deformation modes
and the task relevant parameters T are 0.99 and 0.97
respectively, we simply compute the linear relation between
them with W = [1 T]/BT .

B. Action-Related Place: ARPLACE

In this section, we describe how appropriate ARPLACEs
for manipulation are determined on-line. Due to sensor noise
and other factors that influence the state estimation, the
task relevant parameters can never be known exactly, and
uncertainty must be modeled. The belief state therefore
also associates a covariance matrix with each position:(σ2

xx σ
2
yx

σ2
xy σ

2
yy

)
, computed by our vision-based object localization

module [10].

Because of this uncertainty, it does not suffice to compute
only one classification boundary given the most probable
position of the cup as the ARPLACE from which to grasp.
This might lead to a failure if the cup is not at the position
where it was expected. To solve this problem, we use a
Monte-Carlo simulation to generate a probabilistic advice
on where to navigate to grasp the cup. This is done by
taking 100 samples from the Gaussian distribution of the
cup position, given its mean and covariance matrix. This
yields a matrix of task relevant parameters ts = [xs ys].
The corresponding classification boundaries hs are computed
for the samples. In Fig. 12(a), 30 out of the 100 boundaries
are depicted. These were generated from the task relevant
parameters x=-0.3, y=0.1, σxx=σyy=0.05, σxy=σyx=0.
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Fig. 12. Monte-Carlo simulation of classification boundaries to compute
ARPLACE.

We then generate a discrete grid in which each cell mea-
sures 2.5×2.5cm, and compute the number of classifications
boundaries that classify this cell as a success. Dividing
the result by the overall number of boundaries yields the
probability that grasping the cup will succeed from this
position. The corresponding distribution, which takes the
uncertainty of the cup position into account, is depicted in
Fig. 12(b). A similar distribution in 3D (and for different
values of the task-relevant parameters) is depicted in Fig. 3.

VII. EMPIRICAL EVALUATION

a) Number of examples required for exploration: In
Table I we list the number of examples used by the different
exploration strategies over all 12 cup positions. The capabil-
ity maps and human biasing filter out 38.5% and 43.5% of
the examples, but achieve the same model accuracy.

Exploration Size of % less than % correctly
strategy training set training set classified
Default 3600 0 94.0

Cap. Maps 2213 38.5 93.8
Human data 2034 43.5 94.0

TABLE I
OVERALL RESULTS OF THE DIFFERENT EXPLORATION STRATEGIES



b) Evaluation of ARPLACE: Finally, we evaluate the
exploration strategies in the context of using ARPLACE to
compute base positions for robust mobile manipulation. In
this evaluation, the position to which the robot navigates is
simply the position for which ARPLACE returns the highest
probability that grasping the target object will succeed, as
in [16]. We compare this strategy to our previous hand-coded
implementation FIXED, which always navigates to a location
that has the same relative offset to the target object, whilst
at the same time taking care not to bump into the table.

Fig. II depicts the average percentage of successful grasp
attempts, averaged over three different cup positions. The
same experiment was performed for three different uncertain-
ties about the cup position, represented by their covariance
matrices C(po). Overall 2626 evaluation experiments were
performed, resulting in more than 400 experiments per cell
entry. A first conclusion is that using ARPLACE always
performs better than FIXED. As expected, the performance of
both methods decreases as the robot becomes more uncertain
about the cup pose. However, using ARPLACE is more
robust, because as uncertainty increases, the performance of
FIXED suffers much more. By explicitly taking uncertainties
about the robot’s estimation of the world’s state into account,
ARPLACE is more robust when used for this task.

C(po)(
0.00 0.00
0.00 0.00

) (
0.01 0.00
0.00 0.01

) (
0.04 0.00
0.00 0.04

)
Success rate Pla4Man 89% 73% 65%

Success rate Default 84% 58% 27%
Significance p > 0.1 p < 0.001 p < 0.001

TABLE II
RESULT OF THE EMPIRICAL EVALUATION. DIFFERENCE BETWEEN

DEFAULT AND PLA4MAN STRATEGIES, DEPENDENT ON C(po).

VIII. CONCLUSION

We have presented an approach to acquire a model of
action-related place through experience-based learning. We
have empirically demonstrated that using analytic models and
human data to bias the exploration significantly reduces the
number of training examples required for learning, whilst
yielding a model of the same accuracy. The analytic model
is a capability map, which is a compiled representation of the
robot’s workspace. The human data is acquired with camera-
based tracking and RFID tags.

As the model is learned from experience, this approach
can easily be applied to different types of robot, for instance
legged robots, rather than the mobile platform used here.
Different robots will gather different training data, which will
lead to models tailored to the specific skills of the robot.

In our current investigations, we are taking into account
different types of objects and grasps, thus leading to a more
general concept of ARPLACE. Instead of mapping specific
objects to places, we will map object and grasp properties to
deformation modes. Also, instead of using the capability map
to filter out certain random samples, we are considering using
it to actively assist in the sampling procedure. Leven and

Hutchinson [12] have demonstrated that basing the sampling
on a measure of manipulability derived from the Jacobian
enables the robot to learn accurate Probabilistic Roadmaps
with less samples. With such an active search strategy, we
expect to require even less samples to learn an accurate
model. This will enable us to learn more general models
of place, that take different objects and grasps into account.
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