
Towards Practical and Grounded Knowledge Representation Systems for
Autonomous Household Robots

Moritz Tenorth, Michael Beetz
Intelligent Autonomous Systems, Technische Universität München

{tenorth, beetz}@cs.tum.edu

Abstract— Mobile household robots need much knowledge
about objects, places and actions when performing more and
more complex tasks. They must be able to recognize objects,
know what they are and how they can be used. This knowl-
edge can often be specified more easily in terms of action-
related concepts than by giving declarative descriptions of the
appearance of objects. Defining chairs as objects to sit on, for
instance, is much more natural than describing how chairs
in general look like. Having grounded symbolic models of its
actions and related concepts allows the robot to reason about
its activities and improve its problem solving performance. In
order to use action-related concepts, the robot must be able to
find them in its environment. We present a practical approach
to robot knowledge representation that combines description
logics knowledge bases with data mining and (self-) observation
modules. The robot collects experiences while executing actions
and uses them to learn models and aspects of action-related
concepts grounded in its perception and action system. We
demonstrate our approach by learning places that are involved
in mobile robot manipulation actions.

I. INTRODUCTION

In order to avoid the need for hardcoding huge parts
of autonomous robot systems — both simulated and real
ones — we must equip robots with an enormous amount
of knowledge. Even accomplishing seemingly simple tasks
such as setting the table require the robot to know what cups,
glasses, drawers, cupboards, chairs, and many other things
are. Robots must be capable of recognizing these objects
and know how to grasp, carry them etc. Robots must also
know which utensils are used for breakfast and how they
are to be arranged on the table, where the utensils and their
arrangement might be context dependent and change over
time.

While for many of these concepts it is difficult and tedious
to state what they are and how they look, they can be easily
specified in terms of their roles in actions and activities. This
is because objects in our household are made for performing,
enabling, and supporting certain actions. Chairs are objects
to sit on. Cups and glasses differ because they are supposed
to be grasped in different ways. Also, people go to to places
in order to do something: they go to the cupboard to retrieve
cups and sit at the table to eat.

As a consequence, many objects and places of our daily
life can be specified both naturally and easily in terms of the
roles they play in actions and activities. While the action-
related concept definitions are elegant and easy to agree
with, they have a big disadvantage: the specifications are not

effective, meaning that we can only recognize the concepts
after the respective actions have been taken.

To achieve both, we propose to equip robots with knowl-
edge representation and reasoning systems that can automat-
ically learn descriptive concept specifications from action-
related ones. To this end, we propose to extend description-
logics based knowledge representation systems of robots
with means to represent, learn, and employ action-related
concepts based on the following principles.

• The knowledge base includes manipulation actions such
as pick, place, transport, different classes of objects
relevant for kitchen work, locations, and situations.
Using these concepts, a programmer can define new
concepts such as the utensils needed for breakfast or the
locations where people stand when taking cups from the
cupboard.

• Robots are equipped with an observation system for
their own actions and activities as well as for those of
other agents. This observation system transforms ob-
servations of actions into abstract learning-task specific
experiences that include parameterizations of actions,
the robot’s beliefs and intentions of the robot, aspects
of the action context that might affect the action and
their execution, and features of objects manipulated.

• The representation provides mechanisms for learning
probabilistic classifiers for these concepts that decide
whether or not a given entity belongs to the respective
concept. The classifiers are to be expressed in a given
feature language, such as the set of perceivable features.

• The concepts and their learned descriptions are first
class objects of the knowledge representation languages
which enables their use in other inference tasks or
for defining more advanced and derived concepts. The
control system can also use the learned models for
predicting properties of actions and their effects, for
inferring intentions, guessing action parameters, clas-
sifying behaviors, etc.

In this paper, we extend GrAM (Grounded Action-related
Models, [1]) and apply the approach to mobile manipulation
actions performed by an autonomous household robot in sim-
ulation and reality. The system is using PROLOG as the basic
reasoning engine. The learning, data mining, and reasoning
mechanisms needed for grounded knowledge representation
are integrated by extending the set of predefined PROLOG
predicates. OWL (Web Ontology Language) serves as the

Thing

Agent-
Generic

Robot

B21

Human

Physical
Device

Food
Vessel

Cup Dinner
Plate

Silverware
Piece

Dinner
Fork

Table
Knife

Event

Action

Action
OnObject

PickingUp
AnObject

PuttingDown
AnObject

Place

Manipulation
Place

PickupFood
VesselPlace

PickupSilver
warePlace

Fig. 1. Simplified structure of the robot’s knowledge base.

storage and interchange format for our knowledge bases.
Thus a grounded knowledge base for a kitchen robot can

be built by interacting with the robot, by defining new action-
related concepts in the robot ontology, by collecting experi-
ence during robot operation, and by using the PROLOG tell
and ask interface.

The main contributions of this paper are
• the proposition to specify objects, places etc for mobile

robots manipulation tasks by their role in actions rather
than their appearance,

• a method for autonomously learning grounded models
of implicitly specified action-related concepts from col-
lected experiences,

• a system architecture that combines a knowledge base,
(self-) observation modules anchored in the robot’s
perception and action system and data mining methods
to learn action-related concepts.

In the remainder of this paper we proceed as follows.
In the next section we give an example that demonstrates
how our system learns action-related places for the table
setting task and how it uses the learned concepts in order
to infer the intentions of people. The subsequent sections
describe the technical aspects of our system. We start with
describing the knowledge base, then present the observation
system for actions and finally explain how the models are
learned. The paper ends with a review of related work and
our conclusions.

II. USAGE SCENARIO

In order to get some intuition of how our knowledge
representation system works, we start by describing an
interactive knowledge acquisition session in which a pro-
grammer identifies concepts that are important for the robot’s
operation, specifies them in action-related terms, and devel-
ops additional characteristics of these concepts through the
application of knowledge mining mechanisms to experience
data acquired by the robot during its operation. An overview
of the system he is using is given in Figure 2.

The programmer starts with the taxonomy depicted in
Figure 1 without the concepts in gray which are the ones
that will be acquired in this session. In the beginning, the
taxonomy includes the concepts of a robot, of physical
devices with cups and plates, events with actions, pick-up
and place actions as specializations, and places including
manipulation places.

Programmer

Robot control
program

RoLL automaton

anchored

Collected experiences

Data
mining
toolbox

PROLOG

DB access predicates

Database

G
rA

M
 predicates

uses learned concepts and
classifiers to improve
the competences and
performance of the program

Observation System and Data Acquisition
The observation system records and analyzes data about
the robot’s own actions and those performed by other
agents in the environment. This data collection is done us-
ing the Robot Learning Language (RoLL, (Kirsch & Beetz
2007)). RoLL allows to define Hierarchical Hybrid Au-
tomata (HHA) which give access to data from every level
of the control program.

In many cases, the data needed for learning originates
from very different parts of the program, for instance a high-
level pick-up routine and a lower-level grip routine. The
HHAs are anchored to the execution of goals or changes in
global state variables and thus provide access to every detail
of the robot, its belief state and its environment.

Instead of just collecting plain data, RoLL aggregates dif-
ferent sources according to the requirements of the learning
task. This abstract, structured information is called “experi-
ence” since it contains everything that is needed to under-
stand a certain episode.

Figure 7 shows an example of a simple automaton that
saves the start times of the pick-up and the grip routines,
the manipulated object as the result of the find-entity routine
and the robot pose when gripping the object. This data from
three different routines is combined to one experience.

(r o l l : de f ine- raw-exper ience p ick -up -da ta
: s p e c i f i c a t i o n
(main

: begin ((s t a r t - t i m e t ime-s tep))
: c h i l d r e n

((f i n d - e n t i t y
: end ((e n t i t y (: i n t e r n a l - v a l u e ”ENTITY ”))))

(g r i p - e n t i t y
: begin ((robot -pose [pose b21-robot]))
: end ((g r i p - t i m e t ime-s tep))))))

entity-picked-up

find-entity grip-entity

Figure 7: Definition of a Hierarchical Hybrid Automaton
and the resulting structure.

The experiences collected by RoLL automata are stored in
a database so that they can flexibly be accessed. Processing
steps like the clustering of noisy position data can be added
to transform the data into a form that is more suitable for the
subsequent learning steps.

In some cases, the robot needs data from sensors in its en-
vironment, especially when observing actions performed by
other agents. This data can also be accessed by RoLL, since
the robot can transparently read all sensors in the kitchen
from its control program. A wireless sensor network gives
access to RIFD tag readers for identifying objects, laser
scanners for determining peoples’ positions, fixed stereo
cameras for advanced human pose estimation, cameras on
the robot for object recognition and tracking and a sensor-
equipped glove with force sensors, an accelerometer, an
RFID tag reader etc.

This sensor information allows the robot to analyze how
other agents, like humans, perform actions, compare their

behavior to its own and learn through imitation.

Model Learning
The final part of our system is the mechanism to automati-
cally learn a classifier if a “learnable” concept is queried.

A specification of such a concept contains information
which properties are observable (i.e. which can be used as
features to train the classifier) and which are predictable by
the model. During the system design, the programmer se-
lects a suitable set of observable properties for a concept
and a classifier that is able to extract the desired relations.
By deriving the concept definition from the learning system
ontology, he marks it as “learnable”.

In addition to that, he has to specify how the training data
can be obtained. The beforementioned computable classes
(SQLComputable and JythonComputable) allow to transpar-
ently read this information from the database and process it
according to the needs of the classifier.

Whenever such a “learnable” concept is queried, the sys-
tem reads the observables and predictables from the data
base, trains a classifier and uses it with the current data to
check whether a given entity belongs to that concept or not.
If the relations are modeled in an explicit way, as for de-
cision trees, the model can afterwards be transformed into
rules in the knowledge base which can directly be used for
reasoning in the future. Otherwise, the classifier can be used
as a “black box” that decides for each entity if it belongs to
the represented concept or not.

Related Work
The paper by (v. Hoyningen-Huene, Kirchlechner, & Beetz
2007) proposes a technically very similar approach for the
automatic acquisition of grounded action models. However,
their work is focused on the automatic analysis of football
games instead of mobile robot manipulation actions.

A system for the creation of grounded situation models is
presented by (Mavridis & Roy 2006). They build a multi-
layer representation consisting of a stochastic, a continuous
and a categorical level which interchange data. Concepts on
the categorical level can be found in and created from the
stochastic representation and are thus grounded in data. The
environment the robot acts in is very restricted though: a
block-world setting with few items, sparse place categories
and easily identifiable objects.

A general definition of the ”anchoring problem”, i.e. the
link between percepts and associated symbolic concepts, is
elaborated by (Coradeschi & Saffiotti 2003). They present
an approach to maintain this link, but do not go into details
how it is established. (Galindo et al. 2005) build a ”multi-
hierarchical map” combining a spatial and a semantic hierar-
chy based on the anchoring approach presented by Corade-
schi and Saffiotti, but also avoid describing how to determine
which concept a percept should be linked to.

Modayil and Kuipers present a system to automatically
extract objects from an otherwise static scene (Modayil
& Kuipers 2007a) and to autonomously learn which ac-
tions can be used to interact with these objects (Modayil &
Kuipers 2007b). From a laser scanner occupancy grid map,

entity-at-place
pick-up entity

grip
put-down entity

drop

gripbegin → entity pose, robot pose, side, timestep
pick-upend → timestep
dropbegin → entity goal pose,timestep
put-downend→ entity pose, robot pose, timestep

abstract experience

abstract experiencebegin→ entity robot distance,
handle orientation, side

abstract experienceend → time difference

learning experience

learning experiencebegin→ entity robot distance,
handle orientation

learning experienceend → side

Fig. 7. Experience abstraction for the learning problem of determining which
hand to use for gripping.

Figure 8 illustrates the use of hybrid automata in the learn-
ing process on the basis of the learning architecture presented
in Figure ??. The first step in the learning procedure is the
acquisition of raw experiences. For defining the experience, an
experience automaton is defined and anchored to the control
program executed in the environment. Based on this hybrid
model, the data to be observed is defined. This data can stem
from external observations (the state variables) or from internal
information about the program execution (active processes and
local variables). Each detected run of the experience automa-
ton is identified as an episode. Data associated with the episode
can be recorded once at the beginning or end of the automaton
execution or constantly during the interval the automaton is
active. With a hierarchical nesting of hybrid automata this
provides a rich description of the data observed. In Figure 8
different episodes of data are shown in different shades of
gray. The vertical lines separate the data observed during the
run of sub-automata and can therefore be thought of as sub-
episodes. The thin zigzagging lines visualize external data,
the thick straight lines the data gathered from the program
execution status.

In the experience abstraction step the structure of the hybrid
automata is maintained or adapted to a structure that is
semantically sound in the abstracted experience. Not only
the automaton structure is changed in the abstraction pro-
cess, but also the data representing an automaton run. This
transformation of automata gives a very expressive language

for abstracting experiences. In the figure, the hierarchical
structure of the abstract experience is changed and internally
and externally observed values are combined (indicated by
wider zigzags).

The abstraction level used for learning can require a specific
structure of the automaton of the learning experience, for
example when learning with a neural network the learning
system may assume that the data representing the beginning
of the automaton execution contains the input values of the
net and the data observed at the end of the automaton run
represents the output value.

In the current implementation of RoLL the learned function
is integrated into the control program without any more
reference to hybrid automata. However, the things we want
to learn in RoLL are mostly models of the robot behavior.
These models can best be represented in the light of hybrid
systems. For closing this gap, one would only have to model
the control program with a hybrid automaton skeleton, i.e.
specify the structure, but omit quantitative details as shown in
the model automaton in Figure 8. This automaton can then be
replenished with learned prediction models to make accurate
behavior predictions possible and allow a uniform access for
using the models.

If we describe our program as a hybrid system, we soon
realize that the system can be modeled in several ways. One
way would be to describe the top-level program by a sequence
of several continuous processes. The processes correspond
to sub-plan invocations, which are typically extended over a
period of time. Then we have one hybrid system, where the
discrete changes occur when one sub-plan has finished and
another one starts and continuous processes are captured as a
black box in the sub-plans. However, we might want a deeper
understanding of why a sub-plan produces the continuous
behavior we observe. This can be done by having a look
inside the sub-plan, which is built up in the same way as
the top-level plan: it contains calls to sub-plans, which again

State Variables

Critic

experience
automatonexperience

acquisition
. . .

experience
abstraction

. . .

Performance
Element

Learning
Element

Problem
Generator

E
xp

er
ie

nc
e

D
at

ab
as

e
L

ea
rn

in
g

Sy
st

em
s

model automaton

?

?

anchoring

Function

Fig. 8. Architecture of a learning agent when using hybrid automata.

Fig. 2. Structure diagram of our system. Information about the execution
of actions is recorded and stored in a database. The reasoning system can
access this data and derive action-related concepts.

Fig. 3. Kitchen scenario with a simulated B21 robot equipped with a
camera, laser, sonar sensors, and two arms.

The robot (shown in Figure 3) has performed kitchen tasks
and stored experience data collected over this time into a
database that can be accessed using GrAM predicates. Using
these experience data, the programmer now wants to refine
the knowledge base by identifying the places that are relevant
for the robot’s performed tasks and represent these places in
the knowledge base. The programmer starts by looking at the
table setting episodes of the robot by defining the relevant
activity episodes:

t e l l t ab l ese t t i ngTask (T) :−
task (T) ,
task−goal (T , tab le−set−f o r (M)) ,
b reak fas t (M) .

In this example, a tablesettingTask is defined as a task
with the goal table-set-for(M) where M is a breakfast event.

Because table setting is a mobile manipulation task, he
is interested in where the manipulation actions during the
breakfast take place. Thus, he queries the positions where
pick up and put down actions occur and asserts these places

to the knowledge base.

t e l l manipPosi t ions (MPs) :−
se to f (P, manipPosi t ion (P) , MPs) .

t e l l manipPosi t ion (P) :−
(task−goal (Task , pickingUpAnObject) ;

task−goal (Task , putt ingDownAnObject)) ,
subtask (Task , T) ,
t ab lese t t i ngTask (T) ,
task−s t a r t (Task , T s t a r t) ,
holds (p o s i t i o n (Robot , P) , T s t a r t) .

ask manipPosi t ions (ManipPosSet) .

Manipulation places are defined as the positions where
the robot stands when starting to pursue a goal pickingU-
pAnObject or puttingDownAnObject as a subtask of setting
the table. The result of the GRAM query, i.e. the binding of
the variable ManipPosSet, is visualized in Figure 4.

Fig. 4. Raw positions of manipulation actions (dark blue dots), recorded
while the robot (bottom left) set the table in our demo kitchen. Due to the
noisy measurements, it is hard to find a link between actions and positions.

Now the programmer abstracts the positions into places.
In GrAM, places are clusters of positions with respect to
the Euklidean distance of the postions as cost function. To
support the assertion of places, GrAM provides the built-in
predicate possiblePlaces(PosSet, Places).

This predicate applies clustering algorithms to PosSet and
stores the result of the clustering into the variable Places. The
predicate backtracks over different algorithms for clustering
and different parameterizations of them.

Thus, the programmer states the query possible-
Places(ManipPosSet ManipPlaces) and backtracks until he
finds that the proposed ManipPlaces abstract ManipPosSet
adequately, which is depicted in Figure 5. When he obtained
a good solution, he can assert it to the knowledge base.

In GrAM, sets of n-dimensional data points can also
be abstracted into n-dimensional probability distributions.
Probability distributions are first class objects in GrAM
which allow for special purpose inferences such as sampling
from them. Thus, our programmer represents a place by
a probability distribution over positions (see Figure 6) and
samples from the distribution for the reinforcement learning
of pickup actions of the robot.

Next, the programmer investigates whether the robot per-
forms its manipulation tasks at particular places. Thus, he
wants to know if we can predict where the robot will perform
a particular action based on the kind of action that is intended

Fig. 5. Clustering positions of manipulation actions creates more natural
“places” that can be set in relation to the type of action performed from
there.

Fig. 6. Probability distribution of the robot position in manipulation actions,
estimated based on observed positions of the robot.

and the object the action is performed on. Based on the data
collected during the robot’s operation, which is shown in
Table I, the programmer wants to learn prediction rules for
the place where an action is performed.

Agent Object Object class Action Place
B21 DinnerPlate FoodVessel PickingUpAnObject P1
B21 Cup FoodVessel PickingUpAnObject P1
B21 TableKnife SilverwarePiece PickingUpAnObject P3
B21 DinnerPlate FoodVessel PuttingDownAnObject P2
B21 DinnerFork SilverwarePiece PuttingDownAnObject P2

TABLE I
DATA COLLECTED FROM EXPERIENCES FOR THE ”SET THE TABLE FOR

BREAKFAST”-TASK.

In order to keep these rules as general as possible, our
programmer includes not only the objects themselves, but
also the classes they belong to. He already modeled the
taxonomy of objects in the knowledge base, so he can include
the same categories the robot will later use.

This learning problem can be described by the intensional
model named manipPlaceModel shown below. It represents
the correlation between the stated observable action prop-
erties agent, object, objectclass and action on the one side
and the place from which the action was performed on the
other. The model is based on all observed places involved

in manipulation actions (denoted by forPlace and the pickup
and putdown predicates).

t e l l i n tens iona lMode l (manipPlaceModel ,
[fo rP lace (Ps) ,

observable ([agent , ob jec t , ob jec tc lass , ac t i on]) ,
p r e d i c t a b l e ([p lace])])

:− se to f (P, (pickup (P,) ; putdown (P,)) , Ps) .

An intensional model is a general description of a model
for an action-related concept. When being accessed, an exten-
sional model is built by training a classifier that extracts the
relations between the observable and predictable properties
specified in the intensional model.

The extensional model consists of rules that map from a
combination of observed values to the respective prediction
with a certain probability. This probability is based on the
amount of training data that supports the rule and can be
obtained from the learned classifier.

An example rule is given below, which states that an action
will be performed from place p1 if its type is pickingU-
pAnObject and if the object is of the class “FoodVessel”.
The rules that form the extensional model can be asserted to
the knowledge base to extend the place hierarchy and define
more specific manipulationPlaces.

t e l l r u l e (pickFoodVesselPlace ,
[body (

[w i thAc t i on (pickingUpAnObject) ,
w i thObjectClass (FoodVessel)]) ,

head (place (p1)) ,
w i t h P r o b a b i l i t y (1 . 0)])

We would like to point out that intensional models are
completely independent of the context of the robot. They
just describe in general which data can be used to build a
model for a concept. Only the extensional model which is
learned from the robot’s experiences depends on the actual
environment.

Using the concept of a pickFoodVesselPlace for the set-
TheTable activity, the robot can learn the conditional proba-
bility over the subsequent manipulation actions given that a
person is entering the pickFoodVesselPlace while setting the
table. This can, as depicted in Figure 7, be used to infer the
context if a person picks up a cup upon entering this place:

Manipulation places in combination with the associated
actions and objects can also be used to characterize robot
plans. Training a Conditional Random Field (CRF) on a
sequence of actions, objects and places allows to analyze the
plan structure, common action sequences and their transition
probabilities. When interpreting human activities, CRFs can
also serve for matching a sequence of actions to the robot’s
own plans. If the robot has a transformational planning
system, it can thereby determine possibly advantageous plan
transformations and learn from observing human behavior.

Grounded models of action-related concepts form the basis
for a variety of applications that help the robot understand its
environment and improve its behavior. Our approach can be
used to learn very different kinds of concepts and properties,
including possible states of an object (empty or filled cup,
open or locked cupboard), special grasping strategies for
certain (fragile) objects or classes of similar objects that look
very different (sofa, stool, office chair,...).

Fig. 7. Recognizing human intentions allows the robot to react, i.e. either to
support the human or to keep clear. Action-related concepts like the places
where one stands when performing an action can help the robot decide what
a human is currently doing.

III. IMPLEMENTATION

The proposed system consists of three main modules, the
knowledge base, methods for data collection and the data
mining and model construction which are explained in more
detail in the following sections.

A. Knowledge Base

The concepts in the knowledge base describe objects,
agents, actions and other phenomena from the robot’s envi-
ronment. Since our robot operates in the real world, it needs
access to general common-sense knowledge to successfully
plan and perform its tasks. Therefore, we derived our knowl-
edge base from the Cyc upper ontology that provides a large
number of concepts, categorizations and properties.

However, Cyc was built as a general basis to represent
various kinds of knowledge in a common framework, which
means that it is both too large and too general for our
needs. Information about literature or military operations, for
instance, is not needed by a household robot, but detailed
models of tasks and objects are crucial. The robot has to
know how to grip an object, what an object can be used for,
what not to do with fragile or dangerous objects et cetera.
Therefore, we decided to use the Cyc ontology as the upper
layer, but extend it to better represent object manipulation
actions.

Our knowledge representation is based on PROLOG as
a powerful, expressive reasoning system. Extensions have
been made to integrate the data mining and learning modules
which are automatically triggered if a respective concept is
accessed.

B. Observation System and Data Acquisition

In order to build grounded knowledge bases the robots
need mechanisms for the collection of execution data of
their plans. To this end, GrAM uses an observation system
for their behavior that includes the recording of continuous

and discrete state changes caused by the robot executing
its programs and by exogenous events, the control decisions
made, and the beliefs and reasons for making these decisions.
We call this kind of perceptual capability the collection
of experiences. Recording experiences in this sense is the
prerequisite for building grounded knowledge bases.

In GrAM, programmers can specify hierarchical hybrid
automata as conceptual models of problem-solving behavior
and its generation. These automata interpret the data pro-
cessed by the control programs and match the data streams
against the specification of the automaton. If the data stream
is accepted by the automaton, then the automaton transforms
it into experiences. In GrAM, RoLL (Robot Learning Lan-
guage, [2]) provides mechanisms for collecting experiences
which can be specified separately without requiring modifi-
cations of the control program.

Using RoLL the programmer can define a hybrid automa-
ton that mirrors his conceptualization of a pick-and-place
activity. Here the the activity consists of a goal pursuing
activity (perform) and a failure handling state called recover.
The perform state has substates namely entity-picked-up(e1)
and entity-put-down(e1,epos). The automaton is anchored
into the control program by associating state jumps with
labeled statements in the control programs. This way the
observing automaton jumps to the successor node whenever
the respective labeled statement in the program gets exe-
cuted. Labeling a statement in the control program makes
the respective stack frame accessible. Thus, the automaton
can access and record any variable value that is visible in
the respective program context. For example, the hybrid

entity-at-place(e1,epos)

arb

move-entity-to-place(e1,epos) entity-lost-failure
entity-lost-count

perform
entity-picked-up(e1)

entity-put-down(e1,epos)

in-hand(e1)
recover

entity-lost-failure

inc(entity-lost-count)

entity-lost-count<3

Fig. 8. Hybrid automaton for observing pick-and-place activities.

automaton can record the estimated pose of the entity to be
picked up, the robot position and orientation, and the time
instant upon the activation of the control routine pick-up-
entity(e1). During the execution of pick-up-entity(e1) it can
record the trajectory of the arm and recognize the success of
the routine.

These recorded experiences are then stored into a database
that provides GrAM with the data that the knowledge chunks
can be grounded in as shown in our example. GrAM provides
access to the data through user-defined PROLOG predicates
that we further explain in the next section.

C. Model Learning

The final part of our system is the mechanism to automat-
ically build a classifier if a GrAM-concept is queried.

The general structure of GrAM-concepts and relations
between actions, agents, objects and places needed for the

learning process are stored in the GrAM ontology. Modeling
this information in a general way allows to mark concepts
as learnable by simply deriving them from the respective
classes in the GrAM ontology.

As explained above, learning problems can be stated as
intensional models which contain a set of observable and
predictable properties that can be used to train a classifier to
decide if an entity belongs to the modeled concept. This step
is performed by the predicate calcPlaceModel that calculates
an extensional model from an intensional one.
t e l l calcPlaceModel (In tens ionalModel , ExtensionalModel) :−

se to f (O, observable (In tens iona lModel , O) , Observables) ,
se to f (P, p r e d i c t a b l e (In tens iona lModel , P) , P red ic tab les) ,
fo rP lace (In tens iona lModel , Places) ,

getObsValues (Observables , Places , ObservableValues) ,
getPredValues (Pred ic tab les , Places , Pred ic tab leVa lues) ,

c r e a t e C l a s s i f i e r (Observables , ObservableValues ,
Pred ic tab les , Pred ic tab leValues , C l a s s i f i e r) ,

ExtensionalModel = C l a s s i f i e r−Observables−Pred ic tab les .

The first three lines determine which values are to be used
for the classifier, the following two lines get their values, and
the final statements train the classifier.

To get the required training data from the database, com-
putable classes and properties are used. These concepts can
directly be obtained from the database (SQLComputable) or
calculated from parameters (JythonComputable). The system
determines their values by executing the associated script
or the specified SQL command. This mechanism allows for
transparently retrieving external data and using it in the
reasoning process.

A computable class that reads the actions for a place from
the database is shown below:
t e l l ac t i on (Place , Act ion) :−

db connect (db , user , password , L inkID) ,
db query (”SELECT ac t i on FROM manip places

WHERE place = ’ ”&Place&” ’ ” , LinkID , Act ion) .

Currently, we use decision and model trees as classifiers
when learning models, but our approach is in no way limited
to these algorithms. They have the advantage that the result
is represented in an explicit way, so that it can easily be
transformed to rules and asserted to the knowledge base. If
this is not the case, however, the classifier can still be used
as a “black box” that decides for each entity separately if it
belongs to the represented concept or not.

IV. RELATED WORK

A general definition of the anchoring problem, i.e. the
linking between percepts and associated symbolic concepts,
is elaborated by [3]. They present an approach to maintain
this link, but do not go into details how it is established.
[4] build a ”multi-hierarchical map” combining a spatial and
a semantic hierarchy based on the anchoring approach pre-
sented by Coradeschi and Saffiotti, but also avoid describing
how to determine which concept a percept should be linked
to.

[1] propose an approach technically similar to ours for the
automatic acquisition of grounded action models. However,
their work is focused on the automatic analysis of football
games instead of mobile robot manipulation actions.

A system that builds grounded situation models in a
block-world scenario combining continuous, stochastic and

categorical information is presented by [5]. Concepts on
the categorical level can be found in and created from the
stochastic representation and are thus grounded in data. The
setting is very simplified though, containing only few places,
categories and objects.

Modayil and Kuipers present a system to automatically
extract objects from an otherwise static scene by analysing
differences to a laser scanner occupancy grid map [6] and
to autonomously learn which actions can be used to interact
with these objects [7]. Actions are learned by motor babbling,
the observation of the outcome and the construction of a
model. Since their robot does not have any manipulation
skills, the actions are limited to pushing objects around.

V. CONCLUSIONS

We consider it very important for a robot that has to
perform complex tasks in an environment together with
humans to have a knowledge base that is grounded in its
perception and action system.

In this paper, we present an approach for creating a
practical knowledge representation for mobile robots per-
forming manipulation actions in a household environment.
We combine the Cyc upper ontology with action-related con-
cepts that describe relations needed for mobile manipulation
tasks. These concepts are described by a set of observable
properties that can be used to build a model for the concept.

Our robot is equipped with methods to observe actions
and their context and store the experiences in a database.
These experiences can then be used to transform the general
descriptions of action-related concepts into models that are
grounded in actual data. This is done by training a classifier
that extracts the relations between observable and predictable
properties.

We implemented this system by extending PROLOG with
two kinds of concepts for (a) building a model based on
the intensional specification and the collected data and (b)
deciding if an entity belongs to such a concept. There is no
difference in the reasoning process between usual concepts
and those learned from data, so they can transparently be
used to define more complex concepts.

Specifying objects, places and other entities as action-
related concepts, as we propose, is a very natural way of
defining them, rather than describing what they look like:
When the robot searches for an item, it directly knows what
this item has to serve for, while it is normally not interested
in its appearance.

To our knowledge, there exists no other system that is
capable of learning grounded models from collected ex-
periences and seamlessly integrates these concepts into its
knowledge base. Only like that, the robot can both commu-
nicate about its actions and find concepts from its knowledge
base in its sensor data.

As the next step, we plan to integrate the learned concepts
into our planning system so that the robot is able to adapt its
behaviour based on its experiences. Our robot is already able
to transform its plans in order to optimize its actions. Learned
action-related concepts would improve these transformations

and allow to specificly react on objects’ properties. Possible
changes in the plan may be the choice of a more careful pick
up strategy or a limited acceleration if a cup is filled with
liquids.

VI. ACKNOWLEDGMENTS

This work is supported by the CoTeSys (Cognition for
Technical Systems) cluster of excellence.

REFERENCES

[1] N. v. Hoyningen-Huene, B. Kirchlechner, and M. Beetz, “Gram:
Reasoning with grounded action models by combining knowledge
representation and data mining,” in Towards Affordance-based Robot
Control, 2007.

[2] A. Kirsch and M. Beetz, “Training on the job — collecting experience
with hierarchical hybrid automata,” in Proc. KI-2007, J. Hertzberg,
M. Beetz, and R. Englert, Eds., 2007, pp. 473–476.

[3] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2-3, pp. 85–
96, 2003.

[4] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-
Madrigal, and J. González, “Multi-hierarchical semantic maps for
mobile robotics,” in Proc. IROS 2005, Edmonton, CA, 2005, pp. 3492–
3497.

[5] N. Mavridis and D. Roy, “Grounded Situation Models for Robots:
Where words and percepts meet,” in Proc. IROS 2006, 2006, pp. 4690–
4697.

[6] J. Modayil and B. Kuipers, “Autonomous Development of a Grounded
Object Ontology by a Learning Robot,” in Proc. AAAI-07, 2007, pp.
1095–1101.

[7] ——, “Where do actions come from? Autonomous robot learning of
objects and actions,” in AAAI Spring Symposium, 2007, pp. 1095–1101.

