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Abstract

We introduce the publicly available TUM Kitchen Data
Set as a comprehensive collection of activity sequences
recorded in a kitchen environment equipped with multiple
complementary sensors. The recorded data consists of ob-
servations of naturally performed manipulation tasks as en-
countered in everyday activities of human life. Several in-
stances of a table-setting task were performed by different
subjects, involving the manipulation of objects and the en-
vironment. We provide the original video sequences, full-
body motion capture data recorded by a markerless motion
tracker, RFID tag readings and magnetic sensor readings
from objects and the environment, as well as correspond-
ing action labels. In this paper, we both describe how the
data was computed, in particular the motion tracker and
the labeling, and give examples what it can be used for. We
present first results of an automatic method for segmenting
the observed motions into semantic classes, and describe
how the data can be integrated in a knowledge-based frame-
work for reasoning about the observations.

1. Introduction
More and more technologies are developed to assist hu-

mans in the household: Sensor-equipped environments for
monitoring the behavior and assessing the level of indepen-
dence of elderly people, or robots for performing household
chores like setting a table or filling a dishwasher. For these
applications, it is crucial to be able to model and recognize
naturally performed human actions.

While there is a large body of work on action recogni-
tion, the recognition and understanding of natural every-
day human activities is still difficult due to some hard chal-
lenges:

• There is much variability in how the same action can
be performed, beginning from different arm postures for
holding an object, different grasps to pick it up, different

Figure 1. TUM kitchen environment. Views from the four over-
head cameras with tracked human pose overlaid on top of the im-
age

places and orientations where to put it, up to a varying
order in which objects are manipulated.

• Object interactions can significantly change the human
silhouette and impose constraints on allowed movements
(e.g. when carrying a cup with hot tea).

• Humans perform several actions in parallel, using both
the left and the right hand.

• Natural environments are filled with furniture, which
causes occlusions of different parts of the body.

• Motions of everyday activities can be very subtle as op-
posed to actions such as “kicking” or “punching”.

We created the TUM Kitchen Data Set since we found
that many of these challenges are not sufficiently covered in
the available data sets, neither in those for motion tracking,
nor in those for action recognition (a more detailed discus-
sion of related data sets is provided in the next section). We



also hope to foster research in the areas of markerless hu-
man motion capture, motion segmentation and human ac-
tivity recognition. The data set will aid researchers in these
fields by providing a comprehensive collection of sensory
input data that can be used to develop and verify their algo-
rithms. It is also meant to serve as a benchmark for compar-
ative studies given manually annotated ”ground truth” la-
bels of the ongoing actions. First challenging test marks on
motion segmentation have been set by us using linear-chain
Conditional Random Fields (Section 5.1).

The recorded sequences consist of everyday manipula-
tion activities in a natural kitchen environment (Fig. 1),
with a focus on realistic motions, as opposed to artificial
action sets consisting of motions such as “kick”, “punch”
or “jumping jack”. We provide human motion capture data
that has been tracked using our markerless tracking system
for unconstrained human motions [2]. Our setup is com-
pletely unintrusive for the human subject, and the recorded
video sequences are clear of obstructive technical devices
(Fig. 3). The motion tracker is capable of tracking a high-
dimensional human model (51 DOF) without constricting
the type of motion, and without the need for training se-
quences. It reliably tracks humans that frequently inter-
act with the environment, that manipulate objects, and that
can be partially occluded by the environment. We have
post-processed the motion capture data for the final data
set whenever there was significant tracking failure. The
recorded videos and the motion capture data are further
complemented by RFID tag readings and magnetic sensor
readings from objects and the environment.

We also present first classification results on the se-
quences of our data set for an automatic method for
segmenting observed motions into semantic classes using
linear-chain Conditional Random Fields. The classification
accuracy for this challenging task reaches up to 93.1% for
sequences of the same subject, and 62.77% for cross-subject
classification. Furthermore, we describe how the data can
be integrated in a knowledge-based framework for reason-
ing about the observations.

The remainder of this paper is organized as follows: Af-
ter a short review of related work (Section 2), we describe
the content of the TUM Kitchen Data Set and the file for-
mats (Section 3). Section 4 then explains how the data
was acquired, especially the motion tracking and labeling.
In Section 5, we show examples of how the data can be
used for motion segmentation and how to integrate it into a
knowledge-based action interpretation framework.

2. Related Work
Research on action recognition can be divided into two

directions. Holistic approaches [7, 15, 5] try to find a direct
mapping between observable image cues and action labels,
usually by training discriminative classifiers such as Sup-
port Vector Machines [15]. Evaluation of such approaches

is often done on the KTH data set [15] or the Weizmann
data set [5]. Both contain extremely articulated motions like
walking, waving with the arms or “jumping jack”, that are
of limited relevance to practical applications. Considering
the single camera setups in these data sets, action recogni-
tion will furthermore be view-dependent.

In contrast to holistic approaches, model-based ap-
proaches to action recognition perform action classifica-
tion in phase space, using parameters of a representative
model that have been determined beforehand. Commonly
used parameters are joint angles or joint locations of articu-
lated human models [16, 12]. These parameters are invari-
ant to translations, scale and rotations, making them well-
suited for action recognition. However, the model parame-
ters are difficult to extract by unintrusive means, and most
of the methods rely on commercial marker-based motion
capture systems for retrieving the joint parameters. Sev-
eral motion-capture-only data sets such as the CMU Mo-
tion Capture Database1 or the MPI HDM05 Motion Cap-
ture Database2 are available that provide large collections
of data. Again, the available motions are extremely articu-
lated, well separated, and do not resemble natural everyday
activities, nor do they involve manipulation or interaction
tasks. The Karlsruhe Human Motion Library [1] consists of
motion capture data specifically recorded for human motion
imitation on humanoid robots.

A few data sets of natural motions exist that are suitable
for everyday activity recognition: The CMU Kitchen Data
Set3 contains multi-modal observations of several cook-
ing tasks, including calibrated cameras and motion capture
data. Due to the large number of actions and the high varia-
tion between the actors, this data set is extremely challeng-
ing for action recognition. Furthermore, the actors are heav-
ily equipped with technical devices, making it difficult to
evaluate e.g. markerless motion trackers on the video data.

Uncalibrated video data and RFID readings (without mo-
tion capture data) are provided by the LACE Indoor Activ-
ity Benchmark Data Set4, which is mainly targeted towards
a coarser, general description of activities. Even coarser,
higher-level data is available in the MIT House n Data Set5,
which is aimed at recognizing activities as a whole, while
we are also interested in modeling the single actions and
even different motions an activity consists of.

Due to the complications associated with marker-based
motion capture systems (intrusive setup, problems with oc-
clusions, necessary post-processing, high cost) and their in-
applicability in practical everyday use, computer vision re-
search is aiming to develop markerless motion capture sys-
tems. Several systems have been presented [8, 10], yet most

1http://mocap.cs.cmu.edu
2http://www.mpi-inf.mpg.de/resources/HDM05/
3http://kitchen.cs.cmu.edu
4http://www.cs.rochester.edu/∼spark/muri/
5http://architecture.mit.edu/house n/data/



Figure 2. Anthropometric human model used by the motion tracker. Left: Inner model with 28 body joints. Center: Hierarchical structure
of the inner model and its full parameterization by joint angles as provided in our data set. Right: Example instances of the parameterizable
outer model. Note that joint angle representations may differ when performing the same action by differently sized models.

of them are computationally demanding and lack a proof
of robustness necessary for long-term tracking. In recent
years, a tendency towards learning based methods has been
observed, to overcome the computational burden of search-
ing the high-dimensional human pose space. While some
systems try to infer a direct mapping from observed image
features to articulated human poses [9, 6], others learn pri-
ors for human dynamics to provide a better prediction [19].
Both of these directions are unable to detect arbitrary, pre-
viously unobserved motions, making it difficult to apply
them to the observation of everyday activities. The Hu-
manEva [17] data sets provide a means to benchmark mark-
erless motion capture systems by comparing tracking re-
sults with ground truth data. It consists of motions like
walking, running or punching that are performed by several
actors in an otherwise empty room without any interactions
with objects or the environment.

A detailed survey on existing approaches for action
recognition is provided by Krüger et al. [11].

3. The TUM Kitchen Data Set

The TUM Kitchen Data Set contains observations of sev-
eral subjects setting a table in different ways (each recorded
sequence between 1-2 min). All subjects perform more or
less the same activity, including the same objects and simi-
lar locations. Variations include differently ordered actions,
a different distribution of tasks between the left and the right
hand, and different poses that result from different body
sizes. Since the subjects are performing the actions in a nat-
ural way — apart from the sometimes unnatural transport
of only one object at a time — there are fluent transitions
between sub-actions, and actions are performed in parallel
using both the left and the right hand.

Some subjects perform the activity like a robot would
do, transporting the items one-by-one, other subjects be-
have more natural and grasp as many objects as they can
at once. There are also a few sequences where the subject
repetitively performed actions like picking up and putting
down a cup (∼5 min each).

The data is publicly available for download at Re-
searchers who are interested in the complete set of high-
resolution image data are asked to contact the authors to
coordinate shipping a hard disk or a set of DVDs. Please
cite the paper at hand when publishing results obtained us-
ing the TUM Kitchen Data Set and send an email with the
citation and a copy of your publication to the first author of
this paper.

3.1. Data
The TUM Kitchen Data Set has been recorded in the

TUM kitchen [4], a sensor-equipped intelligent kitchen en-
vironment used to perform research on assistive technolo-
gies for helping elderly or disabled people to improve their
quality of life. The recorded (synchronized) data consists
of calibrated videos, motion capture data and recordings
from the sensor network, and is well-suited for evaluating
approaches for motion tracking as well as for activity recog-
nition. In particular, the following modalities are provided:

• Video data (25 Hz) from four static overhead cameras
(Fig. 1), provided as 384x288 pixel RGB color image se-
quences (JPEG) or compressed video files (AVI). Addi-
tionally, full resolution (780x582 pixel) raw Bayer pattern
video files are available.

• Motion capture data extracted from the videos using our
markerless full-body motion tracking system [2]. Data
is provided in the BVH file format6, which contains the
6 DOF pose and the joint angle values as defined in Fig. 2.
In addition to the joint angles, global joint positions are
available as a comma-separated text file (CSV, one row
per frame, the first row describes the column datatype).
The data has been post-processed when necessary.

• RFID tag readings from three fixed readers embedded in
the environment (sample rate 2Hz).

• Magnetic (reed) sensors detecting when a door or drawer
is opened (sample rate 10Hz).
6http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html



• Each frame has been labeled manually, as explained in
Section 4.3. These labels are also provided as CSV files
with one row per frame.

In addition, internal and external camera calibration param-
eters, as well as a more detailed technical documentation,
are available from the web site.

3.2. Challenges
When performing action recognition on realistic mobile

manipulation tasks, one notices several challenges which
are hardly reflected in most of today’s methods and data
sets. In the following, we provide insights we gained from
analyzing the activity data from different subjects:

Variation in performing activities: From the low mo-
tion level up to the sequence of actions, there are many
degrees of freedom in how everyday activities can be per-
formed (Fig. 3). This high variability needs to be taken into
account when classifying human activities.

Continuous motions: People do not stop in between two
motions, so there is no strict separation between single ac-
tions. To deal with this problem, sophisticated methods for
motion segmentation are required, as actions can no longer
be considered to be well-separated by default.

Parallelism: Humans often use both hands in parallel,
sometimes even while walking at the same time (Fig. 3).
Actions performed with the left and the right hand start at
different times, and may overlap temporally and spatially.
Sometimes actions are started with one and finished with
the other hand, resulting in odd motion sequences per hand.

Difference in body sizes: Differences in body size may
influence the way motions are realized. For instance, we
found that tall subjects put objects on the table mainly by
flexing the spine instead of the elbow joint.

Systems that are to operate in real environments have to
cope with these challenges, and since the recognition rates
of widely used, simpler data sets have become very good
(improving only marginally), we believe that it is time to
scale towards reality and more challenging data. To provide
a gradual increase in complexity, we also provide sequences
in our data set where the motions have been performed with
clearer structure (e.g. objects are always grabbed with the
same hand, less parallelism of actions).

4. Data Acquisition
In this section, we explain in more detail how we ac-

quired the data. On top of the challenges for action recog-
nition mentioned in the last section, the following require-
ments make the acquisition of such a comprehensive data
set a difficult task:

Non-intrusive data acquisition: Apart from privacy is-
sues, monitoring systems in a household scenario should
be as unintrusive as possible. Attaching accelerometers or
markers, as required by many motion capture systems, to

Figure 3. The same action performed by different subjects. Notice
the use of different hands for the same action, the fluent transi-
tions or parallelism of actions (e.g. opening cupboard and grab-
bing cup), and the difference in motion based on the size of the
human.

real people in their everyday lives, or asking them to wear
special skin-tight clothes is certainly not feasible. There-
fore, the system has to perform all analysis based on sensors
embedded in the environment and has to be able to track
people independently of their body size or their clothing.
Interaction with the environment: Opening doors, picking
up objects or being occluded by pieces of furniture causes
significant changes of the human silhouette that may well
confuse most of today’s state-of-the-art markerless motion
capture systems.

4.1. Sensor-equipped Kitchen Environment

RFID and reed sensor data was recorded using the sen-
sor network in the kitchen [4]. Tagged objects include the
placemat, the napkin, the plate and the cup. Metallic items
like pieces of silverware cannot be recognized by the RFID
system, therefore, those object interactions are not recorded
by the RFID system. Approximate positions of the RFID
sensors and the cameras are given in Fig. 4 (left).

The subjects were asked to set the table according to the
layout in Fig. 4 (right). Initially, the placemat and the nap-
kin were placed at location A, the cup and plate in an over-
head cupboard at location B. Silverware was in a drawer in
between A and B. During the first recordings (the episodes
are marked with a number starting with 0-*), the subjects



Figure 4. Spatial layout during the recording sessions. Left: Map
of the kitchen with the approximate locations of the cameras (red)
and the RFID sensors (blue ellipses). Right: Layout of the single
items on the table.

placed the objects at location C, during the second set of
recordings (episodes 1-*), they were put at location D.

4.2. Human Motion Tracking
Human motion capture data provides crucial information

for understanding complex manipulation activities such as
setting a table. The only realistic possibility to acquire such
data to date has been the use of commercial marker-based
tracking systems (optical, magnetic or inertial). However,
using such systems in real scenarios is infeasible, as they
are intrusive, expensive, difficult to set up, and often re-
quire a lot of post-processing. We have developed a mark-
erless motion tracking system tailored towards application
in everyday environments (Fig. 5). Our system comes with
several improvements over both marker-based and state-of-
the-art markerless motion capture systems:

• Setup is fairly easy, cheap and unintrusive, requiring
only the placement of several cameras in the environment
(three or more, depending on the amount of occlusions in
the environment; see Fig. 1).

• We derive a full body pose for each timestep that is de-
fined by an accurate 51 DOF articulated human model
and corresponding estimated joint angles (Fig. 2 and 5).
This also enables us to calculate the trajectories of spe-
cific body parts, e.g. hand trajectories during a pick and
place action.

• The system is functional without a preceding training
phase and is unconstrained with respect to the types of
motions that can be tracked.

• By incorporating their appearance, we are able to track
subjects that act and interact in realistic environments,
e.g. by opening cupboards or picking up objects.

• The markerless tracker enables us to record realistic video
sequences of human activities clear of any obstructive
technical devices.

We will now briefly discuss the technical details of our
system, and refer to [2] for a more detailed description.
Our system estimates human poses in a recursive Bayesian

Figure 5. Human motion tracking (one of four cameras): a) inner
model b) outer model c) virtual 3D view with appearance model.

framework using a variant of particle filtering. Each parti-
cle represents a human pose, given as a vector of joint an-
gles. To account for the high dimensionality of the track-
ing problem, we developed a sampling strategy [3] that is
a combination of partitioning of the parameter space [13]
with a multi-layered search strategy derived from simulated
annealing [8]. While the partitioning strategy enables us to
take advantage of the hierarchical nature of the human body
to reduce tracking complexity, the annealing strategy makes
the system more robust to noisy measurements and allows
us to use larger partitions at once that can be more accu-
rately observed. We use a simple constant pose assumption
with Gaussian diffusion to predict particles, and evaluate
particle weights based on a comparison of projected and ex-
tracted silhouettes.

Our method is able to track subjects performing every-
day manipulation tasks in realistic environments, e.g. pick-
ing up objects from inside a kitchen cupboard and placing
them on a table (Fig. 5). Dynamic parts in the environment
(such as objects being manipulated or opening doors) are
filtered and ignored when evaluating particle weights based
on a comparison between expected background and known
foreground (human) appearance when evaluating particle
weights. Occlusions from static objects in the environment
(e.g. tables) are dealt with by providing blocked regions that
will only be evaluated in areas that resemble the learnt fore-
ground (human). As a rule of thumb for occlusion handling,
every body part should be visible by (at least) 2-3 cameras
to achieve good tracking accuracy. Therefore, areas with
heavy occlusions should be covered by more cameras to
gather sufficient information for successful pose estimation.
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Figure 6. Accuracy and robustness of markerless motion capture
as evaluated using the HumanEva II benchmark.

Validation of our system on the HumanEva II test
suite [17] yielded mean Euclidean joint errors around 5-
6 cm (Fig. 6), with error measurements partly corrupted
due to a systematic error between relative joint positions
in our model and the ground truth model. What is more



important, the tracking accuracy stays approximately con-
stant throughout the tested sequences, proving the ro-
bustness of our method. Videos of the performance on
more complex scenarios, involving occlusions, dynamic
environments and object manipulations, are available at
http://memoman.cs.tum.edu.

We have used the presented tracker to acquire the mo-
tion capture data for our data set. Whenever tracking prob-
lems occurred (mostly while raising the right hand to reach
towards the right outer cupboard, a motion insufficiently
covered by our camera setup), we have manually post-
processed the motion capture data to ensure high quality.
While there are 84 DOF in the provided BVH files, the se-
quences were effectively tracked with 41 DOF. The differ-
ence is due to restricted DOFs in the human model (e.g. the
elbow has only 2 DOF, see Fig. 2), an interpolation of the
spine parameters during tracking, and the non-consideration
of the hand/finger/foot parameters due to the insufficient
resolution of the video data. The processing time of our
method is around 20 sec/frame on common PC hardware,
resulting in overall processing times per table-setting se-
quence of around 8 h.

4.3. Labeling
We manually labeled the data to provide a ground truth

for motion segmentation and to allow for supervised train-
ing of segmentation algorithms. The left hand, the right
hand and the trunk of the person are labeled separately to
take the high degree of parallelism into account: Often, one
hand is opening a cupboard door, while the other one is
reaching towards a cup, and while the body is still moving
towards the cupboard. Such parallel, overlapping actions
are common in the data set. If a global label for the human
action is desired, it can easily be constructed from the more
detailed labeling.

When integrating the motion segmentation with higher
levels of abstraction, it is important that the segments have
well-defined semantics. We chose to represent each seg-
ment as an instance of a motion class in our action ontology
(Fig. 7), which is inspired by the Cyc ontology [14]. Prop-
erties of the action, e.g. which object is being picked up or
which cupboard is being opened, can easily be specified as
properties of the respective instances.

Figure 7. Excerpt from the action ontology used for labeling the
data set. Special motions like ReachingUpward are defined as sub-
classes of the more general Reaching motion.

The set of labels describing the hand motion consists

of Reaching towards an object or the handle of a cup-
board or drawer, TakingSomething, LoweringAnObject, Re-
leasingGraspOfSomething after having put down an ob-
ject or closed a door, OpeningADoor, ClosingADoor,
OpeningADrawer, ClosingADrawer, and CarryingWhile-
Locomoting.

The last class describes all frames when the subject is
carrying an item or, since the difference in the pose is of-
ten negligible, when the subject is moving from one place
to another without carrying anything. It further serves as
a catch-all class and contains the background motion be-
tween the actions. When acting naturally, humans perform
surprisingly many irrelevant movements, such as reaching
halfway towards an object, thinking about it, retracting the
hands and doing something else first. If these motions are
not long and articulated enough to be reliably recognized,
they are put into the catch-all class, which therefore com-
prises rather diverse movements. The alternative, labeling
every short, partial motion, would result in a large set of
classes, ambiguities in the labeling, and hardly detectable
short motion segments.

To take the very different postures for object interactions
with the overhead cupboards into account, we added the
classes ReachingUpward and TakingSomethingFromAbove
which are specializations of the respective motion classes.

The motion of the person in the environment is described
by the trunk label, which only has two possible values:
StandingStill and HumanWalkingProcess, which indicates
that the subject is moving.

5. Applications
We now show two use cases of the data set: inferring the

labels from the motion capture and sensor data, and inte-
grating the data into a knowledge processing system.

5.1. Motion Segmentation

This chapter is about our approach to automatically split
and classify the motion capture data, i.e. to infer the labeled
segments from the data. The system uses linear-chain Con-
ditional Random Fields (CRF) (Fig. 8) to identify motion
segments and represent them as instances of classes such as
Reaching or TakingSomething.

As input, we use a large set of nominal features that can
be split into two groups: The first group consists of pose-
related features, which denote e.g. if the human is extending
or retracting the hands, if the hands are expanded beyond a
certain threshold, or if they are lifted above a certain limit.
We also use discretized angles of the joints that are signifi-
cant for the task at hand, like shoulder and elbow joints.

The second group of features includes information from
the environment model and the sensor network, and indi-
cates e.g. if the human is currently carrying an object, if a
hand is near the handle of a cupboard, or if a drawer is being



opened. Note, however, that all sensors only detect single
events, while the labels are assigned to temporally extended
motions, and that these events can be shifted due to differ-
ent sample rates and a rather long detection range of e.g. the
RFID sensors.

These features are combined, and CRFs are learned on
a labeled training set. The CRF classifiers are integrated
into the knowledge processing system and directly create
a sequence of motion segments which are represented as
instances of the respective semantic classes.

Figure 8. Structure of the CRF for segmenting human motions.

We evaluated our models using leave-one-out cross val-
idation on the episodes 1-0 till 1-4, i.e. the classifier has
been trained on four sequences and tested on the remaining
one. All sequences were of the same subject. The over-
all classification accuracy reaches 82.9% of the frames, or
93.1% on the best sequence. The combined confusion ma-
trix, summing up the results of all test runs, is shown in
Table 1. Bad results for the classes TakingSomething and
LoweringAnObject result from the fact that these classes
are only present in one of the episodes; so if the classi-
fier is trained on the remaining episodes, it does not know
this class at all and therefore must misclassify the respective
frames.

We further tested the cross-subject classification accu-
racy by training on the episodes 1-0 till 1-4, performed by
subject S0, and tested on the episode 1-6, performed by sub-
ject S2. These two subjects differ significantly in their body
size and in the way how they move, which results in a lower
accuracy of 62.77% of the frames.
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Reaching 152 25 7 0 3 0 0 45 6 64
ReachingUp 60 87 1 0 0 4 25 0 0 49

TakingSomething 0 0 0 0 24 0 0 45 2 0
LoweringAnObject 15 0 0 0 0 0 0 0 0 23

ReleasingGrasp 14 0 2 0 227 2 19 0 43 116
OpeningADoor 19 9 1 0 16 416 34 0 1 49
ClosingADoor 0 0 0 0 52 16 299 0 0 13

OpeningADrawer 27 11 41 0 64 0 0 312 39 6
ClosingADrawer 0 0 0 0 60 0 0 73 233 0

Carrying (Idle) 54 17 9 2 261 27 1 11 10 5717

Table 1. Confusion matrix of the classification of the left hand mo-
tion. Not all of the labels in the data set occur in the actions per-
formed by the left hand.

While these are promising results, they also show that

the classification of even seemingly simple everyday ma-
nipulation tasks can be very challenging, especially if they
involve many classes and different subjects, and that more
research is necessary to solve such problems.

5.2. Integration into a Knowledge Base

Since all motion segments are instances of well-defined
classes in the ontology, it is possible to integrate them into a
knowledge processing system in order to perform reasoning
about the actions, their properties and parameters.

In our knowledge processing system, described in [18],
this integration is solved using computable classes and
properties. Computable relations load external information
into the knowledge representation system, e.g. by sending a
query to a database, or compute relations between instances,
e.g. whether one object is on top of another. Here, computa-
bles are used to determine parameters of motion segments
and actions, like an object being picked up or a cupboard be-
ing opened, which are determined by relating the segments
to events simultaneously observed by the sensor network.

Figure 9. Left: Human pose sequence for setting a table. Right:
Human pose sequence for taking a plate out of the cupboard.

An example of such queries is to select trajectories that
serve a certain purpose. Fig. 9 visualizes the results of such
queries: On the left is a query for all postures that are part
of a tablesetting activity, on the right a query for all postures
that are part of a TakingSomething motion, performed on a
DinnerPlate in a TableSetting context:

owl query (? Acty , type , ’ SetTable ’ ) ,
owl query (? Actn , type , ’ TakingSomething ’ ) ,
owl query (? Actn , subEvent , ?Acty ) ,
owl query (? Actn , objectActedOn , ?Obj ) ,
owl query (? Obj , type , ’ D innerPla te ’ ) ,
pos tureForAct ion (? Actn , ?Posture )

The owl query predicates select the desired actions,
namely all actions of type TakingSomething that are per-
formed on an object of type DinnerPlate as a subevent of a
SetTable activity. All poses that belong to the resulting ac-
tions are read with the postureForAction predicate. The pic-
tures in this section are visualized results of queries to the
knowledge processing system. Though the traces are only
drawn for a single joint, the result includes the full human
pose vectors for each point in time.

As described in [18], the data can also be used for learn-
ing the place from which an action is usually performed.
Fig. 10 sums up the main steps: The observed positions



Figure 10. Learning places of interest. Left: Observed positions of manipulation actions. Center: The positions clustered into places.
Right: The result that has been learned as the ”place for picking up pieces of tableware”.

are loaded into the knowledge processing system (left) and
clustered with respect to their Euclidean distance (center).
These clusters are represented as “places” in the knowledge
base, and the system automatically learns a mapping from
action properties (like the object to be manipulated and its
position) to the place where the human is standing. Using
this model, it is possible to either obtain a place for an ac-
tion (like the place for picking up pieces of tableware drawn
in Fig. 10 right) or to classify observations in order to find
out about the most likely action performed from this place.

6. Conclusion
We presented the TUM Kitchen Data Set as a com-

prehensive resource for researchers in the areas of motion
tracking, motion segmentation and action recognition. The
data set already contains several multi-modal observations
of table-setting activities performed by different subjects,
and will be continuously extended over the course of the
following months.

While the evaluation of different approaches on a com-
mon task is very important to judge their performance, it is
also necessary to gradually increase the task complexity and
move towards more realistic data as the systems improve.
The TUM Kitchen Data Set is one step into this direction.

In addition to the description of the data, we also in-
cluded experiments in which we used the TUM Kitchen
Data Set, namely a system for segmenting the observed mo-
tion into the semantic classes given by the labeling, and a
method for including the data into a formal knowledge rep-
resentation.
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