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Abstract— Autonomous household robots are supposed to
accomplish complex tasks like cleaning the dishes which involve
both navigation and manipulation within the environment. For
navigation, spatial information is mostly sufficient, but manip-
ulation tasks raise the demand for deeper knowledge about
objects, such as their types, their functions, or the way how
they can be used. We present KNOWROB-MAP, a system for
building environment models for robots by combining spatial
information about objects in the environment with encyclopedic
knowledge about the types and properties of objects, with
common-sense knowledge describing what the objects can be
used for, and with knowledge derived from observations of
human activities by learning statistical relational models. In
this paper, we describe the concept and implementation of
KNOWROB-MAP and present several examples demonstrating
the range of information the system can provide to autonomous
robots.

I. INTRODUCTION

Environment models or maps are resources that robots
are equipped with or that they acquire in order to perform
their tasks more reliably and efficiently. Being equipped with
sub-symbolic maps, including occupancy grid and neurally
implemented maps, the robot can typically infer its position,
determine its destination, and then compute navigation plans
to get there safely and fast. These decisions are based on
the information stored in, or implied by, the map, such as
whether or not the destination is reachable, and taken by
inferring the appropriate action parameterizations from the
map. Topological and object maps structure the environment
model into meaningful pieces, such as distinctive places,
objects, regions, gateways, etc. They thereby enable the robot
to have semantic knowledge such as class labels for the map
entities or for regions depending on the types of objects the
regions contain [1]. Using these types of maps robots can
in addition navigate “semantically” – go into a kitchen or
position themselves relatively to objects in the map.

Even more expressive and powerful are knowledge-linked
semantic object maps. In knowledge-linked semantic object
maps, all object models in the map have a symbolic name
that is visible in the associated knowledge base. Also, the
data structures contained in the map are defined in terms
of a terminological knowledge base – the categories of
entities and their attributes. So, given these definitions robots
can automatically translate the data structure of a semantic
objects map into a set of facts in a symbolic knowledge base.

In this paper, we introduce KNOWROB-MAP, a system
for the acquisition, representation, and use of knowledge-
linked semantic object maps. As an example use case, let
us assume the robot is looking for a device for heating

food. Figure 1 visualizes the result of this query in two
different environments. In the left kitchen, there is a regular
oven, in the right one there is a microwave. However, the
system can infer, based on its common-sense knowledge,
that all specializations of Oven, like a RegularOven or a
MicrowaveOven, can be used, and it can localize a suitable
object in the map.

Fig. 1. Results of a query for a device for heating food. The environment
model inferred that both a RegularOven (left) and a MicrowaveOven (right)
can be used, and returns the respective object depending on the map. The
abstract knowledge about objects is represented separately from the spatial
information and can therefore easily be transferred to a new environment.

This paper makes the following contributions. First, we
explain how we can link a semantic object model to a
terminological knowledge base. Given this link we show how
the robot can be equipped with encyclopedic, commonsense,
and probabilistic knowledge about its environment. The
consequence is that we can specify robot control programs
that are more general in that they can automatically infer the
right action decisions and parameterizations. Thus, the gain
in using KNOWROB-MAP is that the robot can act more
appropriately in more environments with less programming
work. Thus, using KNOWROB-MAP the robot can carry
out actions like turning off all heating devices or bringing
clean glasses by inferring which cupboards they are probably
stored in.

In the following sections, we will first give an overview
of related work and describe the main concepts and impor-
tant components of the system. We will then explain how
the maps are represented and combined with encyclopedic
knowledge, common-sense knowledge, and learned proba-
bilistic models, before we describe the integration into the
robot control program. A detailed scenario description pro-
vides examples of how the knowledge is used to accomplish
a complex, under-specified task.



II. RELATED WORK

Over the last years, several approaches to building “se-
mantic maps” have been developed. Some of them detect
rather coarse entities like the floor, the ceiling and walls
in 3D laser scans [2], or focus on distinguishing different
kinds of rooms based on the objects inside [1] or spatial
relations between them [3]. Other methods, like [4], the one
we are using as input in this system, or [5] detect, identify
and localize objects in the scene and therefore create the basis
for more abstract representations. However, these approaches
only recognize and localize objects, but do not store further
semantic information: Humans immediately associate various
properties to something classified as a “cupboard”, but robots
do not have this knowledge. Without an explicit knowledge
representation, different robots or even different parts of the
same robot may have a very different notion of an object.
Extending maps to provide such kind of knowledge is the
goal of KNOWROB-MAP.

Deeper semantic representations, which also describe ob-
ject properties like the point where to grasp or the opening of
a bottle, are used by [6], but are mainly hand-coded and do
not leverage the power of hierarchical, abstract knowledge
representations. Galindo et al. [7] present a system for
automatically building maps that combine a spatial hierarchy
of local metric and global topological maps with a conceptual
hierarchy that describes some semantic properties of rooms
and objects. In that, their approach is similar to ours, but
the conceptual hierarchy is much simpler and the spatial
description much coarser. Zender et al. [8] present a system
for coupling maps of recognized objects with a knowledge
base, but with several limitations: They use a rather small,
hand-crafted ontology compared to that in KNOWROB-MAP,
and the map is only two-dimensional, which limits its use
for robot manipulation.

III. SYSTEM OVERVIEW

KNOWROB-MAP represents and reasons about semantic
environment models by linking the output of an object
recognition and mapping system to formally represented
knowledge about the detected objects (Figure 2).

The maps are generated by the system described in [4]
and semantically represented as part of the KNOWROB

Fig. 2. Block diagram of the main components of KNOWROB-MAP. We
extend an object detection, segmentation, recognition and mapping system
with encyclopedic, action-related and common-sense knowledge to create
semantic environment models. These can be queried by the robot control
system for planning its actions.

knowledge processing system [9]. KNOWROB provides the
basic knowledge representation and reasoning capabilities,
whereas KNOWROB-MAP adds the integration with the
mapping system and object-related knowledge. The system is
implemented in SWI Prolog using its Semantic Web Library
for representing the robot’s knowledge in the Web Ontology
Language (OWL). OWL is a form of description logics and
as such distinguishes between classes and instances. General
knowledge about types of objects is modeled on the class
level, whereas instances describe the actual objects in the
map. Classes may be hierarchically structured and inherit
the properties of their (potentially multiple) parents. Roles
can link classes or instances and describe their properties.

IV. MAP REPRESENTATION

In KNOWROB-MAP, a knowledge-linked semantic object
map consists of the semantic object map data structure and
a schema that serves for translating this representation into
a set of instances in the knowledge base. It gives the robot
the ability to construct a semantic environment model out of
its map data structures.

We define a schema for constructing knowledge-linked
semantic object maps as a triple SemObjMap = (D,O,R)
consisting of a definition of the data structure produced
by mapping system, an ontology describing the knowledge-
based map representation, and a set of rules that translate
between the two representations. This schema describes a
whole class of knowledge-linked semantic object maps that
can be instantiated once a specific map of an environment has
been built. Applying the schema to the map data structures
generates an ABOX (assertional box), i.e. a set of typed
object instances in the knowledge base. Conceptually, this
approach is similar to creating views in data bases: Views
are a different representation of the same data, which can
simply use different names for some of the fields, but can
also perform complex combinations of multiple values.

Let us assume that the mapping system is able to describe
objects in the environment by a unique identifier and a set
of attribute-value pairs and create a data structure like the
following:

obj-instance: 37 obj-instance: 43
class: cupboard class: oven

width: 0.40 width: 0.60
depth: 0.35 depth: 0.60

height: 0.55 height: 0.74
xPos: 2.75 xPos: 1.29

This information is to be translated into a format compatible
to the robot’s knowledge base (Figure 3), creating a new view
on this data. For this purpose, we define so-called computable
predicates, a feature of KNOWROB for loading external
data into the knowledge representation during run-time. A
computable predicate defines how the semantic properties
(like volumeOfObject) can be calculated, in this case based
on the information in the map:
owl_individual_of(Obj, Cl) :-

class(Obj, Cl).
owl_has(Obj, kb:volumeOfObject, Vol) :-

width(Obj, W), depth(Obj, D), height(Obj, H),
Vol is W*D*H.



Using the computable predicates, the system creates typed
object instances for each detected object and determines their
properties, like the pose, dimensions, or sub-parts such as
door handles. The following listing is an OWL description of
a cupboard including links to its pose matrix (homography)
and the associated door instance. An example of a complete
map file is available on-line at http://ias.cs.tum.edu/
kb/ias_map.owl.

<kb:Cupboard rdf:about="#cupboard31">
<kb:depthOfObject>0.62</kb:depthOfObject>
<kb:widthOfObject>0.3</kb:widthOfObject>
<kb:heightOfObject>0.7</kb:heightOfObject>
<kb:properPhysicalParts rdf:resource="#door7"/>
<kb:pose rdf:resource="#rotmatrix3d_14"/>

</kb:Cupboard>

V. ENCYCLOPEDIC KNOWLEDGE

The map representation is embedded into a hierarchy of
classes and properties which describe and inter-relate these
classes. The lowest level of the hierarchy assigns types to
(parts of) objects in the environment, whereas the higher
levels group these types into more and more abstract classes.

A small excerpt of the knowledge base, which only
contains the taxonomy for some of the objects in our
test environments, is given in Figure 3. The full ontology,
which also describes actions and events, is available on-
line at http://ias.cs.tum.edu/kb/knowrob.owl. The
class structure is inspired by the OpenCyc ontology.

Due to the hierarchical structure, properties can be de-
fined either specifically for e.g. cupboards, or generally for
more abstract classes like containers. Compared to a flat
representation, where such properties are directly assigned
to the object instances in the map, a hierarchical structure
reduces the amount of redundant information that has to
be stored, helps keep the representation consistent, and
facilitates changes.

Each class can have multiple parents, which correspond to
the different semantic aspects of that class. For example, the
class Dishwasher in Figure 3 is derived from BoxTheCon-
tainer, providing information about its shape and the fact that
it can contain objects, from CleaningDevice, which indicates
its main function, and from ElectricalHouseholdAppliance,
which describes where such objects can be found and what
they need to operate.

Since properties of object types are separated from the
environment-specific map, they can easily be transferred to
a new environment. The example in Figure 1 showed how
the system can adapt to different environments, using the
same common-sense knowledge.

VI. COMMON-SENSE KNOWLEDGE

When dealing with an everyday object like a dishwasher,
people have a natural understanding for what and how it
can be used, and which problems might occur during its
usage. To equip robots with similar knowledge, we extended
KNOWROB with common-sense knowledge which has been
collected and made publicly available by the Open Mind In-
door Common Sense project (OMICS) [10], and is especially

Fig. 3. Excerpt of the knowledge base taxonomy, with those concepts
highlighted that are instantiated in the semantic environment map.

intended for the use in indoor mobile robotics. The knowl-
edge was acquired from more than 3,000 voluntary Internet
users and comprises more than 1.1 million statements.

These sources of knowledge complement each other: Cyc
provides a broad categorization of things and dictionary-
like descriptions, OMICS contains detailed action-related
knowledge about everyday objects, e.g. that unloading a
dishwasher will change its state from full to empty, or that
dishes might be wet while unloading it.

The knowledge in OMICS is stored in natural language
and has to be translated into a logic-based description to
be integrated into KNOWROB-MAP. The first step in the
automated procedure is to determine the meanings of a word
using the WordNet [11] database. Afterwards, the system
makes use of pre-existing mappings between WordNet and
concepts in the Cyc ontology [12] to determine the formal
ontological concept for a word. The concepts in Cyc are
identical to those in KNOWROB and can therefore be used
here. Relations expressed in natural language are translated
to predicates linking concepts in the knowledge base. For
example, the parts relation in OMICS is translated to the
properPhysicalParts relation in Cyc:
parts(dishwasher, motor) =>
(( wordnetCyc(dishwasher, Dishwasher),

wordnetCyc(motor, Engine)) =>
properPhysicalParts(Dishwasher,Engine)).

This automated process can also translate more complex
instructions like place dishes onto the dishwasher rack using
the methods described in [13] for translating task descriptions
from websites.
parts: PowerLine, Framework-SupportingStructure, SoapDish, Engine
locations: Kitchen
proximity: CookingRange, Sink, EatingVessel
actions: Loading, Unloading, TurningOnPoweredDevice, TurningOffPoweredDevice,

UsingAnObject, EmptyingAContainer, OpeningSomething, ClosingSomething
states: OpenPortal, ClosedPortal, DeviceOn, DeviceOff, Full, Empty
causes: (Dishwasher,ClosedPortal)→(Dishwasher,DeviceOn)

(Dishwasher,DeviceOn)→(Bowl-Eating,Clean)
desires: (Sink,Full)→(Dishwasher,Empty)

(Dishwasher,DeviceOff)→(Dishwasher,DeviceOn)
state changes:

(Dishwasher,DeviceOff)→TurningOnPoweredDevice(Dishwasher,DeviceOn)
(Dishwasher,Full)→Unloading(Dishwasher,Empty)

responses: (Dishwasher,Full)→(TurningOnPoweredDevice)



(Dishwasher,Full)→(Unloading)
(Dishwasher,Empty)→(Loading)

problems: (Unloading,Dishwasher)→(DinnerPlate,Wet)
(Unloading,Dishwasher)→(EatingVessel,Dirty)

paraphrases: (Dishwasher,Loading)↔(Dishwasher,FillingProcess)
(Dishwasher,Unloading)↔(Dishwasher,EmptyingAContainer)
(Dishwasher,Unloading)↔(EatingVessel,Unloading)

reversibility: (Unloading)⊥(Loading)
(TurningOnPoweredDevice)⊥(TurningOffPoweredDevice)

Figure 4 depicts a small fraction of knowledge associated
with the dishwasher and dishes, together with related actions
and states. These relations were automatically extracted from
OMICS and translated into formal expressions using the
methods explained above.

Fig. 4. Common-sense knowledge about a dishwasher integrated from
OMICS. The diagram shows some relations, actions, states, and objects
that are closely related with the concept Dishwasher. How the relation for
potential problems can be used in robot control and how solutions can be
determined is further explained in Section IX.

VII. PROBABILISTIC ENVIRONMENT MODELS

With encyclopedic knowledge, we can represent that an
object can potentially be or is definitely related to a number
of other objects, but we cannot decide which objects are
most likely to be related. However, there are many aspects
of the environment that are subject to uncertainty, which,
most importantly, concerns all aspects pertaining to humans’
use of the environment. Therefore, we extend the knowledge
representation with statistical relational models [14], which,
in particular, can extend the semantics of description logics
to a probabilistic setting [15].

For example, we are interested in modeling the properties
of containers and appliances – e.g. which containers are
likely to contain which types of objects (given their envi-
ronmental context). Furthermore, since environments are in-
extricably linked to the activities performed within them, we
also consider models that allow us to predict likely locations
and states of objects based on the activities that are currently
being carried out, or, inversely, to draw conclusions about
activities given the locations of objects in the environment.

In KNOWROB-MAP, Bayesian Logic Networks (BLNs,
[16]) are used to represent such models. In a nutshell, A
BLN is a statistical relational model that represents general
principles about a particular domain within a template model,
which can be applied to instantiate a ground model repre-
senting a full-joint probability distribution given a particular
set of entities that we are interested in (e.g. a particular set of
kitchen devices and containers). Due to space constraints we

cannot describe the models in more detail; please see [16]
for more information.

As a concrete example, consider a BLN that models the
probability with which containers in a kitchen environment
contain objects of particular types – given the entire spatial
context of the respective containers, including their proximity
to devices such as the oven. A fragment network for this
model is shown in Figure 5. This model can help the robot
find storage locations for particular objects in a yet unknown
environment.

Fig. 5. Graphical template structure in a Bayesian logic network (left).
This rather small (manually defined) template structure gets instantiated
automatically into the large ground model with hundreds of nodes describing
the actual objects in the environment (right).

VIII. INTEGRATION INTO THE ROBOT CONTROLLER

Integrating knowledge processing into robot control pro-
grams is important for keeping control routines flexible and
general, i.e. independent of the environment. Integration
thereby means both providing methods for communication
between the environment model and the planning system and
actually using the knowledge when taking decisions. The first
aspect is realized by providing a ROS service for language-
independent access to KNOWROB-MAP. The robot plans,
which are written in Lisp, use a wrapper library that allows
to integrate queries to KNOWROB-MAP into the control flow
of a robot:
(query-vars (?handle ?pose)
(and (owl_individual_of ?heatingDevice HeatingDevice)

(owl_has ?heatingDevice properPhysicalParts ?handle)
(owl_individual_of ?handle Handle)
(owl_has ?handle pose ?pose)))

(perceive ?handle ?pose)
(achieve (entity-gripped ?handle))

Here, the planning system queries for the pose of a handle
of a heating device, parametrizes the perception system with
the handle’s estimated pose to restrict the search space, and
finally sends the grasping command to the robot controller.
Note that the binding of the variable ?heatingDevice de-
pends on the environment; Figure 1 shows that the result
can be an instance of any subclass like a RegularOven or
MicrowaveOven. Also, properPhysicalParts is a transitive
relation, that is, it also finds handles attached to parts of
the ?heatingDevice, e.g. its door.

IX. USAGE SCENARIO

KNOWROB-MAP is designed to support the robot in a
large number of everyday household tasks. As such, its
performance can best be measured by the range of queries it
supports. In order to demonstrate its capabilities and to show



Fig. 6. Left: Instance of a table in the kitchen environment. Right: Dishes
and silverware that are on the table.

how it can help a robot take decisions, we will describe one
exemplary scenario that covers many facets of the system:
A mobile household robot is asked to clear the table. There
is no plan for this task in the robot’s plan library, so the
robot has to infer which actions to perform in which order,
which objects to interact with in which way, and what to
watch out for. We assume, however, that the robot has a set
of parameterizable routines for low-level tasks like picking
up an object as described in [17].

The information used in the following example was ob-
tained from pre-existing, public resources, like OMICS and
OpenCyc, in a completely automated way. In the (slightly
simplified) queries, words starting with an uppercase letter
denote variables, instance names begin with a lowercase
letter, class names are written within single quotes, e.g.
’KitchenTable’. The figures are visualizations of the
content of the knowledge base, not simulations. All input
data was acquired on the real robot platform using the
methods described in [4] and [18]. Having received the
command to clear the table, the robot queries its common-
sense knowledge base for a description of the actions it needs
to perform:

?- taskSubTasks(’clear the table’, Task, subTasks).

The OMICS database contains a large number of step-
by-step instructions for common household tasks which we
transformed as described in Section VI. Therefore, the above
query returns the concept ClearTheTable as binding of the
variable Task, and a list of actions bound to subTasks.
Table I shows the natural language instructions obtained from
OMICS and the formal representation in description logic
that has been generated from them.

Since the plan importer directly maps verbs to action
concepts, it often produces rather general concepts like
PuttingSomethingSomewhere as translation of “put”. For suc-
cessfully executing the tasks, however, it is often helpful to
have more specific plan descriptions. Therefore, the system
searches in its action taxonomy for subclasses that have the
properties given in the instruction, like LoadingADishwasher
as a specialization of PuttingSomethingSomewhere with the
toLocation being a Dishwasher, and replaces the general
action class with the specific one.

TABLE I
TASK INSTRUCTIONS FOR: CLEAR THE TABLE

Natural Language Description Logic
remove dirty dishes RemovingSomething u objActedOn.EatingVessel
remove silverware RemovingSomething u

objActedOn.SilverwarePiece
put dishes into dishwasher PuttingSomethingSomewhere u

objActedOn.EatingVessel u
toLocation.Dishwasher

remove table cloth RemovingSomething u objActedOn.TableCloth

Fig. 7. Left: Household appliance for washing dishes. Right: Entities and
relations used as evidence for the probabilistic models.

As described in [13], the system also comprises a plan
generator that translates the action concepts in the knowledge
representation into the respective goal statements in the
robot’s plan language. RemovingSomething, for instance, is
mapped to a routine for picking up an object. Before the
action can be executed, necessary action parameters have to
be resolved. Some values, like the objActedOn, are directly
specified in the instructions by the properties printed in bold
in Table I. The following queries retrieve the object instances
referenced by the objActedOn and toLocation properties from
the environment model (Figure 6 and Figure 7 (left)).

?- owl_individual_of(Table, ’KitchenTable’).
Table = kitchentable1.

?- owl_individual_of(Obj, ’EatingVessel’).
Obj = cup3;
Obj = plate1.

?- owl_individual_of(Obj, ’SilverwarePiece’).
Obj = fork1;
Obj = knife1.

?- owl_individual_of(Obj, ’Dishwasher’).
Obj = dishwasher0.

Now the object references are resolved, but the robot is
still missing a description for the LoadingADishwasher task.
Again, the robot queries its common sense knowledge base
to retrieve a sequence of actions to perform (Table II):

?- subTasks(’LoadingADishwasher’, subTasks).

After having resolved the references to the RackOfDish-
washer, the robot has all the information to clear the table
and load the dishwasher. In reality, however, there are lots
of potential problems that can make the plan fail. Therefore,
manually created plans include failure detection and recovery
routines to verify that a task has been performed correctly.
In the automatically created action sequences described here,
such checks can be generated from the problems relation
in OMICS, e.g. by querying for all problems related to a
Dishwasher:

?- actionOnObject(Action,’Dishwasher’),
owl_restriction_on(Action,

restriction(problem,some(Problem))).
Action = ’Loading_Dishwasher’,
Problem = ’Dishwasher_Full’ ;
Action = ’Unloading_Dishwasher’,
Problem = ’DinnerPlate_Wet’ ;

TABLE II
TASK INSTRUCTIONS FOR: LOAD THE DISHWASHER

Natural Language Description Logic
collect dishes Collecting u objActedOn.EatingVessel
open dishwasher OpeningSomething u objActedOn.Dishwasher
pull out dishwasher rack PullingAnObject u

objActedOn.RackOfDishwasher
place dishes onto rack PuttingSomethingSomewhere u

objActedOn.EatingVessel u
toLocation.RackOfDishwasher

push in dishwasher rack PushingAnObject u
objActedOn.RackOfDishwasher

close dishwasher ClosingSomething u objActedOn.Dishwasher



Possible solutions or responses to these problems are also
provided by the common-sense knowledge (Figure 4). The
correct response clearly depends on the situation at hand:
When the dishwasher is full of dirty dishes it should be
turned on, whereas in the case of clean dishes it should
be unloaded. Once the dishwasher has been loaded and
cleaned the dishes, the robot is faced with the new task
of returning the dishes where they belong. Given only the
environment model of the kitchen, the robot has to sensibly
choose locations at which the now clean objects should be
placed. Looking for the storage location of a cup, a pot and
cutlery, it might issue the following query to the probabilistic
model described in Section VII,

P(contains(?c, Cup), contains(?c, Pot), contains(?c, Cutlery) | L)
≈ 〈〈 TopCupboard3: 0.51, TopCupboard1: 0.23, . . . 〉,
〈 BottomCupboard1: 0.65, TopCupboard3: 0.36, . . . 〉
〈 Drawer: 0.75, TopCupboard2: 0.16, . . . 〉〉

where L is the complete environment specification of the
kitchen, involving the types of all containers and appliances
as well as their vertical and horizontal neighborhood relations
(see Figure 7 right). If the result is ambiguous, the robot
can select among the candidate cupboards depending on
other objects they contain. If we assume that similar objects
are usually placed together, the “semantic similarity” of the
concepts in the ontology can be a useful hint. We used the
wup similarity measure [19] that is defined as

sim(C1, C2) =
2 · d(S)

dS(C1) + dS(C2)

where S is the least common superconcept of C1 and C2,
d(C) is the (lowest) depth of concept C in the ontology, and
dS(C) is the (lowest) depth of concept C in the ontology
when taking a path through superconcept S of C. Table III
shows some examples of objects and their similarity to cups,
cooking pots, and cutlery.

X. CONCLUSIONS

In this paper, we described how environment models can
be enriched with knowledge to become more than just maps
of obstacles: By linking recognized objects to encyclopedic
and common-sense knowledge obtained from large, publicly
available knowledge bases, the system can provide a robot
with information about what these objects are, what they can
use used for, and how to use them. We presented methods
for describing the map in a way that it can be related with
different kinds of knowledge, for acquiring general object-
related knowledge as well as probabilistic models of object
locations, and finally demonstrated the usefulness of the
approach in an extensive example scenario.

TABLE III
CONCEPT SIMILARITY BASED ON THE KNOWROB-MAP ONTOLOGY.

glass plate salad bowl platter knife spatula
Cup 0.78 0.67 0.67 0.67 0.52 0.52
Pot 0.67 0.67 0.67 0.67 0.6 0.7
Cutlery 0.58 0.58 0.58 0.58 0.78 0.76

cakepan colander pasta cereals mop detergent
Cup 0.67 0.53 0.5 0.53 0.53 0.53
Pot 0.78 0.7 0.5 0.53 0.6 0.6
Cutlery 0.6 0.6 0.48 0.5 0.6 0.6
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