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Abstract— As robots are starting to perform everyday manip-
ulation tasks, such as cleaning up, setting a table or preparing
simple meals, their control programs must become much
more knowledgeable than they are today. Typically, everyday
manipulation tasks are specified vaguely and the robot must
therefore infer by itself how to do the appropriate actions
to the appropriate objects in the appropriate way in order
to accomplish these tasks. These inferences can only be done
if the robot has access to the necessary knowledge, including
knowledge about how objects look, what their properties are,
where they can be found, what might happen if particular
actions are performed on them, etc.

In this article, we describe and discuss the use of information
that is available in the world-wide web and intended for human
use as a knowledge resource for autonomous service robots.
To this end, we introduce several categories of websites that
can serve as information sources and explain which kinds of
information they provide. We then investigate several informa-
tion processing methods that can access these websites in order
to provide robots with necessary knowledge for performing
everyday manipulation tasks. The use of the web as a knowledge
resource is a promising alternative to the hard and tedious task
of coding comprehensive specific knowledge bases for robots.

I. INTRODUCTION

Performing complex everyday manipulation tasks, such as
setting the table, cleaning up, and preparing meals, requires
robots to have plans — robot control programs that can
not only be executed but also explicitly reasoned about
and manipulated [18], [3]. A large research community in
AI planning is investigating the automatic generation of
plans by studying the computational problem of computing
action sequences that transform states satisfying a given state
description into another state that satisfies a given goal [19].

We agree with McDermott [18] when he argues that this
computational problem turned out to be too hard and too
easy at the same time. The hardness of the problem is
caused by its generality making the problem computationally
unsolvable or intractable at best. At the same time, the
problem oversimplifies its real counterpart, because action
sequences are not expressive enough to specify competent
robot manipulation behavior.

The world-wide web provides us with promising alterna-
tives to reconsider the problem of realizing competent plan-
based robots more successfully. Instead of generating plans
in the classical way, web-enabled robots can make use of
websites like wikihow.com to look up the appropriate courses
of action on the web. After having read the instructions
and transformed them into a plan, the robot must find the
described objects and tools to perform the task. To do so, it

Fig. 1. Performing complex tasks like making pancakes requires a lot
of knowledge. We present some approaches to acquire different kinds of
knowledge from public web resources and make them available to robots.

can use other websites such as online shops to find out how
for instance a bottle of pancake mix looks. The robot also
has to know the properties of objects, for example if they
are perishable, in order to decide where to search for them
or how to handle them. Such information can also be found
on the web, often on the same page as the product picture.

The web-enabled generation of robot activity plans is
attractive because web instructions already include sequences
of actions and thereby simplify the plan generation problem.
In addition, the instructions contain information about how
actions should be carried out, hints about how to improve
action execution, and potential problems. These pieces of
information are necessary for producing more competent
manipulation behavior.

The web thus provides plenty of knowledge a robot can
use to accomplish everyday tasks (Figure 2). ehow.com
and wikihow.com contain thousands of step-by-step instruc-
tions for everyday activities like cracking and separating
an egg, cooking different types of omelets, etc: about
92,000 on wikihow.com and more than 1.5 million articles
on ehow.com. Lexical databases like wordnet.princeton.edu
group verbs, adverbs and nouns semantically into sets of
synonyms (synsets), which are linked to concepts in encyclo-
pedic knowledge bases like opencyc.org. These encyclopedic
knowledge bases, which are represented in a variant of
first-order logic, contain an abundance of knowledge about
concepts such as eggs. They can inform the robot about the
nutrition facts of eggs or tell it that eggs are products of birds
and fish. However, they typically lack action-related informa-



Actions in a task
• ehow.com, wikihow.com
• Step-by-step instructions for everyday tasks

Ontological relations
• opencyc.org
• Very large encyclopedic knowledge base

Common-sense knowledge
• openmind.hri-us.com
• Common-sense knowledge from Internet users

Object appearance
• germandeli.com, images.google.com
• Pictures of products and other object classes

Object shape
• sketchup.google.com/3dwarehouse/
• 3D CAD models of household items

Object properties
• germandeli.com
• Object properties extracted from shopping websites

Fig. 2. Examples of web pages that provide useful information for a household robot.



tion, e.g. the piece of information that eggs can break easily
and that they should be cooked or baked before consumption.
This kind of knowledge is available at other websites such as
the OpenMind Indoor Commonsense website (openmind.hri-
us.com). But the web not only contains knowledge about
object usage. A robot could also retrieve appearances of
objects (images.google.com, germandeli.com) and even geo-
metric models (sketchup.google.com/3dwarehouse).

There are two main contributions of this article: First, we
give an overview of our approaches to enable robots to use
web information to accomplish more tasks in a more general,
flexible, and reliable manner, and to scale towards more
realistic everyday tasks. In addition, we discuss different
sources of knowledge on the web and our experience with
using them: Which information do they provide, how can
they be used for robot tasks, and which information is still
hard to find on-line?

The remainder of this paper is organized as follows:
We first describe a usage scenario (Section II) and dis-
cuss general problems that arise when trying to use web
information, which was originally created for humans, in a
robotics context (Section III). Then, we describe how differ-
ent kinds of knowledge can be acquired, namely encyclope-
dic (Section IV) and common-sense knowledge (Section V),
task instructions (Section VI), object recognition models
(Section VII) and formal descriptions of object properties
(Section VIII). We conclude with a discussion of what has
been achieved in the area and where we think more research
is required (Section IX).

II. USAGE SCENARIO

Over the course of the following sections, we will use the
task of making pancakes as an example to explain the use
of web information. A video of a recent live demonstration,
in which our robots performed this task using knowledge
that has been, to a large degree, acquired from web sources
as described in the following sections, can be found in our
YouTube channel1. Though extremely simple for a human,
such tasks are very complex from a robotics point of view
and require a lot of knowledge to be accomplished. The first
part of the video thus shows, in form of a dialog with a
human, which knowledge the robot needs for the task and
where it can get it from.

In the beginning, the robot is asked to make pancakes. It
looks up instructions on the web, finds some at wikihow.com
(see Figure 3), and starts to translate them into an executable
plan. In the first step, it parses the instructions, written in
natural language, to identify the parts of speech and the
sentence structure. Then it builds an internal representation
of the actions described, resolves ambiguities in the descrip-
tion using its encyclopedic (Section IV) and common-sense
knowledge (Section V), and generates a plan (Section VI).

Next, the robot checks which objects are required for the
task – which can easily be done using the formal task de-
scription generated in the previous step – and whether it has

1http://www.youtube.com/watch?v=4usoE981e7I

Fig. 3. Example of instructions for making pancakes from wikihow.com

a recognition model for each of them. The example object, a
bottle of instant pancake mix, was found on germandeli.com,
a shopping website, and a recognition model was created
from the product picture (Section VII and Figure 4).

Fig. 4. Picture of a bottle of pancake mix obtained from an online shop.

Once the robot knows which objects it needs and how they
look like, it has to find them in the kitchen environment.
Since it has not only downloaded the picture of the pancake
mix, but also information about its properties, it can infer that
it needs to be stored in the refrigerator. Figure 5 illustrates
the inference steps that are performed. The reasoning process
combines encyclopedic knowledge about the fridge (upper
left part), common-sense knowledge that a refrigerator is
the storage place for perishable goods, spatial knowledge
describing an instance of a refrigerator at a certain location in
the environment, and knowledge about the pancake mix that
was automatically generated from an online shop’s website
(Section VIII). To combine these different kinds of knowl-
edge from different sources, a common representation is
crucial. In our system, all knowledge is formally represented
in the KNOWROB knowledge base [35].

The methods presented in this paper helped the robot to



Fig. 5. Reasoning steps to infer a probable storage location for a bottle of pancake mix.

acquire important information. The methods for acquiring
the knowledge worked well – the major problem is a lack
of knowledge sources that provide the required information.
We pushed the automatic import from existing sources as far
as we could, but still had to manually add some scenario-
specific routines or knowledge. For example, the robot’s
knowledge about actions, objects, and processes is still not
deep enough to competently understand instructions written
for humans. The instructions in the experiment refer to the
“pancake mix”, a liquid stuff-like substance (i.e. something
that can be divided into smaller pieces without changing its
type). While the robot can map this description to the correct
concept in its knowledge base, it would also have to infer that
this stuff is usually in a container, that it thus has to search for
this container, open it, pour the mix onto the pancake maker,
and further estimate how much of the mix is required. These
relations are still manually specified, mainly since there is no
source of information providing such knowledge. Equipping
robots with sufficiently deep knowledge about objects and
actions in the household scenario remains an open challenge.

The execution of the pancake making task was based
on low-level routines that were vision-guided, but manually
coded, like the routine for flipping the pancake, or routines
for e.g. the visual calibration of the spatula after it has been
picked up. Inferring that such routines are needed (in this
case because of the millimeter-precision required for flipping
the pancake) and parameterizing them correctly is another
task for which robots need much more knowledge than they
currently have.

III. MAKING USE OF WEB INFORMATION

On the one hand, the World Wide Web is the biggest
resource of knowledge that has ever been available to a
robot, consisting of billions of pages that cover a huge
range of topics for many different audiences, and which are
all, in principle, machine-readable: digital text, pictures, and
videos. On the other hand, most web pages are intended to

be used by humans – that is, they are written in different
natural languages and in a way that humans find them
convenient to read. This makes it difficult for machines to
use the information because they first need to understand the
meaning of the words and sentences in natural language.

The semantic web initiative [11] was founded to overcome
this problem by creating a world wide web for machines.
In the semantic web, information is encoded in machine-
readable form instead of natural-language text, i.e. in a way
that computers can retrieve, understand, relate and process
the information in the documents. Briefly, the semantics of a
document are not hidden in the text, but explicitly described
in a logic-based format computers can understand. In theory,
this allows computers to autonomously answer queries by
searching the web for information. In practice, however,
only a very small fraction of the information on the web
is available in the Semantic Web or as web services [24],
especially hardly any information required by autonomous
robots in household environments. Therefore, we needed to
develop techniques to translate the information from human-
readable form – instructions in natural language, pictures,
and 3D models of objects – into representations the robot
can use – formally described knowledge, task descriptions
and object models that can be used for recognition.

Current work in web-mining and information re-
trieval does not formally represent the retrieved informa-
tion [1], does only mine information from semi-structured
sources [38], or focuses on finding information that is rele-
vant for humans rather than understanding its content [16].
In contrast, robots need a much deeper understanding of the
data, for instance instructions given in natural language, to
make use of the information, and need to convert it into
formal representations to relate the web information to other
pieces of knowledge.

Despite the lack of content, the techniques developed as
part of the semantic web initiative have proven extremely



useful for robots to acquire, represent, and use semantic
information. Much research has been done on topics such as
understanding web sites, creating ontologies from web data,
and especially on developing standardized languages (e.g.
RDF [2] and OWL [20]), query and exchange formats (e.g.
SPARQL [28] and OWL-S [17]), and reasoning engines (e.g.
HermiT [21] and Pellet [32]). In our research, we use these
semantic web tools to represent and reason about the robot’s
knowledge. Whenever possible, we also try to use knowledge
that is already available in semantic web formats.

IV. ENCYCLOPEDIC KNOWLEDGE

Robots need to use information from many sources: The
vision system recognizes objects, a mapping system builds an
environment map, a human gives commands, and the robot
loads knowledge from different web sites. For making use
of this knowledge, a robot has to autonomously integrate
these different pieces of information, i.e. it needs to represent
them in a common format, a common language, that formally
describes the information including its semantics.

A natural solution to such problems is to use an on-
tology that formally describes and defines things and their
relations – descriptions like the ones that can be found
in an encyclopedia. This kind of knowledge about classes
of things, their sub-classes and properties is thus called
encyclopedic knowledge. Examples of such knowledge are
that a refrigerator is a container (i.e. it can contain other
objects) and a sub-class of cooling device and electrical
household appliance (i.e. can be found in a household and
needs electricity to operate). Such encyclopedic knowledge
defines the terms a robot can use to describe its world in, to
put things into relation, and to perform reasoning. Having a
large encyclopedic knowledge base is thus crucial for being
able to autonomously acquire and interpret knowledge.

Already some decades ago, large projects like Cyc [13] or
SUMO [22] were started to collect encyclopedic knowledge
on a large scale and to build a general upper ontology. To
this end, researchers manually encoded very large amounts of
knowledge in a machine-understandable format, a variant of
first-order logic. These knowledge bases have become huge,
covering a wide range of phenomena. However, this increase
in size comes at a cost: Inference becomes rather slow, and
ambiguities are created by knowledge a robot hardly ever
needs. For a robot, “center” will mostly be a spatial concept,
not a position in American Football. Recent efforts tried to
automate the construction of knowledge bases by extracting
encyclopedic knowledge from sources like Wikipedia ([38],
[34]), mainly focusing on structured pieces of information
such as categories and info-boxes. However, they mainly
contain information about people and historic events and are
thus not directly useful for a robot.

Neither Cyc nor SUMO are specialized for robotics, but
were developed with the intention of understanding texts. For
robot applications, it is often desirable to have less broad but
deeper knowledge of the domain the robot is working in,
like descriptions of different grasps or the concept of a “ma-
nipulation position” as the location where the robot should

stand to manipulate objects. This was the reason to develop
specialized knowledge bases for autonomous robots. Exam-
ples of such robot knowledge bases are KNOWROB [35] and
ORO [12]. Both use semantic web technology to represent
information, which facilitates the integration of different
sources of knowledge.

V. COMMON-SENSE KNOWLEDGE

Encyclopedic knowledge provides the robot with defini-
tions of object classes and their properties but often lack
action-related information: What to do with the objects, how
to handle them? In the pancake example, the robot has to
know that one should use a spatula to flip the pancake, use a
pancake maker to make pancakes or watch out for problems
like spilled liquids or broken eggs. All this common-sense
knowledge is completely obvious to humans and therefore
usually not explicitly described. Humans assume that their
communication partner also has this kind of knowledge and
therefore usually omit such “obvious” information when
explaining something. Therefore, robots also need common-
sense knowledge to understand instructions given to humans
– either in direct dialog or in indirectly via web pages.

The problem is that, since it is obvious to humans, most
of this knowledge is typically not written down: humans
usually acquire it already in their early childhood. There-
fore, such knowledge has to be collected specifically for
robots. Instead of letting a small group of experts create a
knowledge, projects like the OpenMind Common Sense [30]
initiative collect such data from Internet users by presenting
them incomplete sentences and letting them fill in the gaps.
While the OpenMind project collects general common-sense
knowledge, the OpenMind Indoor Common Sense project
(OMICS [6]) focuses on the kind of knowledge required by
robots acting in indoor environments.

The users’ responses are saved in semi-structured form in a
relational database as sentence fragments in natural language.
Several projects have started to convert the information into
representations that support reasoning, for instance Concept-
Net [14] or LifeNet [31]. Kunze et al. [10] translated the
knowledge from the sentences in natural language into a
formal logical representation in the KNOWROB knowledge
base.

The problem of acquiring large amounts of common-
sense knowledge is still an unsolved issue. “Crowdsourcing”
the collection by distributing the task to voluntary Internet
users helps to scale the system but creates other challenges:
Ambiguities in natural language are hard to resolve and even
harder when looking at the short sentence fragments pro-
vided by OMICS. Relations are also interpreted completely
differently by different people: A sentence fragment like “if
A, then B” is interpreted as either immediate and inevitable
effect (switching on a dishwasher changes its state from
“off“ to “on”), long-term effect (switching on a dishwasher
results in clean dishes) or as indirectly related consequence
(loading a dishwasher causes dishes to be clean – if, what
is omitted, the soap is filled in, the hatch is closed and the
device is turned on), or even as “implies” (dishes are clean



if the dishwasher has been turned on). Furthermore, there
are gaps in the provided knowledge due to the way it was
collected: being presented a sentence with placeholders to be
filled in, people tend to enter the most obvious information.
Presenting the same template to many people thus does not
guarantee better coverage; instead, obvious statements occur
several times, less obvious ones hardly ever. Nevertheless,
such common-sense databases are a very useful source of
knowledge that can hardly be found elsewhere, and the
translation into semantic networks or description logics turns
them into a useful resource for autonomous robots.

VI. TASK INSTRUCTIONS

Instructions taken from web sites need to be translated
from natural language into formal, logic-based representa-
tions, and finally into executable robot plans. A detailed
description of the system we developed can be found in [36];
here, we will just outline the main steps of the translation
process. In the beginning, the sentences are parsed using a
common natural-language parser [9] to generate a syntax tree
(Figure 6 left). The branches of the tree are then recursively
combined into more and more complex descriptions to create
an internal representation of the instruction (Figure 6 right)
describing the action, the objects involved, locations, time
constraints, the amount of ingredients to be used etc.
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Fig. 6. Parse tree of an instruction (left) and resulting internal action
representation (right). Part of our procedure for translating web instructions
into executable robot plans [36].

The words in the original text are resolved to concepts in
the robot’s knowledge base by first looking up their meanings
in the WordNet lexical database [5], and by exploiting map-
pings between WordNet and the Cyc [13] ontology. Usually,
a word can have different meanings, so a disambiguation
procedure needs to decide which one to choose. Currently,
we use a rather simple method that is based on the phrase
context and on information about object-action pairs obtained
from Cyc. We are investigating how to improve this method
by taking more of the robot’s knowledge into account.

The translation system had originally been developed
using instructions for setting a table or making tea (see [36]
for the list of tasks and the conversion success rates). To
use it in the pancake experiment, we only had to add a
few mappings from WordNet to Cyc (e.g. for the pancake
mix), the rest of the conversion process worked without
modifications. Infering information that is missing in the
instructions remains an open challenge: For instance, an
instruction for setting a table states that items have to be

Fig. 7. A sample image found on Google for Barilla (left) and an image
taken with a consumer camera as a test case on the right side. Extracted
features are visualized with green markers.

put in front of the chair, but does not require them to be
on top of the table. Other instructions fail to mention that
an oven has to be turned off after use. Robots will have to
detect these gaps and fill them appropriately – again, a very
knowledge-intensive task.

VII. OBJECT RECOGNITION MODELS

Having generated a plan for making pancakes, the robot
has to find the right objects for the task. If the web in-
structions refer to objects the robot does not know about,
it needs to acquire information about their appearance as
well as their semantic properties. For packaged products,
like the bottle of pancake mix, the recognition can use image
features extracted from product pictures that can be found on
shopping websites. For tools, e.g. the spatula for flipping the
pancakes, the robot needs information about their shape that
can for instance be found in databases of 3D CAD models.

A. Image search engines

A Google Images-based classification system can help
recognize branded products. For a set of object classes, a
training set of images can be obtained using a set of search
terms, and a classifier that is able to distinguish those classes
in images acquired by the robot can be trained in relatively
low time. Google’s mechanisms for finding pictures that
are related to the most relevant pictures allow to acquire
a reasonably good selection of training images.

The classifier is based on the ”Bag of Visual Words”
approach presented in [33]: Our implementation uses SIFT
features extracted from a subset of the training images, and
clusters the resulting SIFT vectors to get a discrete repre-
sentation. This representation is referred to as the codebook,
or the Visual Words, see Figure 7 for a sample image with
extracted features. For performance reasons, the clustering
is not directly performed on the whole training set but
separately for all classes. The resulting clusters are then fused
based on the Fisher criterion for two centroids of two clusters
c1, c2 and their respective intra-cluster variance σ1, σ2:

d(c1, c2) >
‖c1 − c2‖2
σ1 + σ2

This enables us to apply this codebook to any search image
after extracting the SIFT features in this image. We train a
support vector machine for all relevant classes, which is then
applied on the images acquired by the robot. False positive
detections are reduced using the scores given by the support
vector machine and thresholds on the minimum amount of
features available in the images. To add spatial information,



Fig. 8. Samples from test on the left and training data on the right for the
classes Volvic and Coca Cola.

we use geometric segmentation and restrict the extraction of
features to object candidates in order to reduce clutter.

Tests showed that this method is able to achieve up to
95% accuracy for a reasonable number of classes (e.g., in
one test, Coca Cola, Fanta, Pringles, Milka,
Barilla, Volvic, see Figure 8 for a subset of the test
and the training images for the classes Volvic and Coca
Cola). This result was achieved with training data from the
web and test data consisting of images of objects belonging
to those classes taken under challenging illumination condi-
tions.

B. CAD model databases

In order to manipulate objects, it does not suffice to
know their types, a robot also needs spatial information.
CAD models are one of the most accurate descriptions
for rigid objects. Once a CAD model is available, a robot
can recognize and localize the corresponding object in the
environment and plan its manipulation actions.

The problem is that a robot usually does not have models
for all objects it needs to manipulate. Assuming the class of
the object is known, like pan or cup, we propose to download
a set of CAD models from the Internet and to find the model
that best fits the current sensor data (see [8] for details). The
method requires that the system has a rough estimate of the
location of the object (e.g. on top of the stove or inside a
specific cupboard) and a good approximation of its size, e.g.
from a segmentation of 3D sensor data or from common
sense knowledge.

To make use of CAD models from the Internet for recog-
nizing objects, a robot first has to select the most relevant
objects to be downloaded and then needs to verify and
compare the appearance of the actual object with the CAD
model. The problem of finding relevant models is tackled
using tags, which are assigned to the models by search
engines like the Google 3D Warehouse. As part of the search
results for words like pan or cup, we get a list of tags which
allow to put the results into the right context. Usually, those
tags describe the content of the CAD model better than its
title or the fact that it was returned as an answer to a query.
Models are selected from the result set if their tags have a
low semantic distance to the search term [25]. This semantic
distance is computed using the WordNet lexical database and
describes how close the words are in the WordNet taxonomy.
All selected models can be matched to the current scene and
get a certain score based on the current sensor data and the
respective method. If there is more than one good match,
the system can interpolate between two 3D models to get an
intermediate model which may fit the data even better than

Fig. 9. On the lower image two models from the search for cup and
a morphing between the two cups are displayed. The original model and
an interpolated model are applied to the same scene to show that the
interpolated model fits better in this case.

the original ones. This morphing procedure is explained in
more detail in [39], an example is shown in Figure 9.

Once a model is selected, the system has to decide if
this CAD model fits the sensor data from the initial position
estimate. We integrated two methods into our system that are
capable of taking an arbitrary CAD model and comparing
it with sensor data of the expected position of the real
object. The first method is based on geometric edges of the
CAD model that are projected into a 2D image. Possible
object poses are pre-calculated, the model is projected into a
virtual edge image and compared in an efficient way to the
image of the scene. This search is called ”3D Shape-Based
Matching” and uses as core the method proposed by Ulrich
et al. [37]. This method is evaluated in our setup with some
improvement in [7]. The second method relies on 3D sensors.
Instead of pre-calculating edges in the image, it computes the
normals and the relations between sub-samplings of pairs of
normals for the model, and compares them with the current
3D data using an efficient voting scheme. This method is
based on the work proposed by Drost et. al. [4]. A model for
this method can be extracted from a view or a CAD model
of a 3D area-sensor. Both methods can suffer from false
positives while not requiring a segmentation beforehand.

C. Online shops

Another possibility to make use of the World Wide Web
for the recognition of household objects are online shops
such as germandeli.com. Shopping websites contain more
or less standardized descriptions of thousands of everyday
objects including high-quality photos, all products are sorted
into categories, and most pages have a very similar structure.
This makes these websites an excellent source of information
about manufactured products. Compared to the system for
using the Google Images search (Section VII-A), which
learns models of entire categories of objects, the method
described here learns models of specific objects.

In this section, we describe how the product pictures can
be used to build recognition models for the respective object
class. The next section discusses how object information
from the product pages can be acquired in an automated
way. As a test page, we chose germandeli.com, a shop for
German products in the United States, because of its well-
organized category structure, the clean object pictures, and



the English descriptions of German products which we could
easily buy. The system is in no way limited to this specific
web site, though sites that are rather based on search than
on categories (e.g. amazon.com) will provide less structured
information.

To make use of the product pictures, we designed and
implemented the Objects of Daily Use Finder (ODUfinder)2,
an open-source perception system that can deal with the
detection of a large number of objects in a reliable and fast
manner. Even though it can detect and recognize textured as
well as untextured objects, we hereby do not report about the
latter. The models for perceiving the objects to be detected
and recognized can be acquired autonomously using either
the robot’s camera or by loading large object catalogs such
as the one by GermanDeli into the system.

Fig. 10. Left: Region of Interest extraction using cluster segmentation
and back-projection of 3D points, Right: Over-segmentation using a region-
growing based approach on an object segmented out of the pointcloud shown
in the left image.

Product pictures from online shops can provide good
models of the texture of objects, but do not contain infor-
mation about their scale. For manipulation, accurate scaling
information is crucial and, in our system, was obtained by
combining the 2D image-based recognition with information
from a 3D sensor.

For obtaining a 3D pose hypothesis, we use the obser-
vation that, in human living environments, objects of daily
use are typically standing on horizontal planar surfaces, or
as physics-based image interpretation states it, they are in
“stable force-dynamic states”. The scenes they are part of can
either be cluttered, or the objects are isolated in the scene.
While the solution of the former is still ongoing work, we
solve the latter by a combined 2D-3D extraction of objects
standing more or less isolated on planar surfaces.

This combined 2D-3D object detection takes a 3D point
cloud, acquired by a tilting laser scanner, and a camera image
of the same scene as its inputs. Figure 10 left shows how
the system detects major horizontal planar surfaces within the
point cloud and segments out point clusters that are supported
by these planes [29]. The identified clusters in the point cloud
are then back-projected into the captured image to form the
region of interest that corresponds to the object candidate.

The ODUfinder then employs a novel combination of
Scale Invariant Features (SIFT) [15] for textured objects
using a vocabulary tree [23], which we extend in two
important ways: First, the comparison of object descriptions

2http://www.ros.org/wiki/objects of daily use finder

is done probabilistically instead of relying on the more
error-prone original implementation with the accumulation
of query sums. Second, the system detects candidates for
textured object parts by over-segmenting image regions, and
then combines the evidence of the detected candidate parts
in order to infer the presence of the complete object (see
Figure 10 right). These extensions substantially increase
the detection rate as well as the detection reliability, in
particular in the presence of occlusions and difficult lighting
conditions like specular reflections on object parts. In the
current ODUfinder configuration, the robot is equipped with
an object model library containing about 3500 objects from
Germandeli and more than 40 objects from the Semantic3D
database3. The system achieves an object detection rate of
10 frames per second and recognizes objects reliably with
an accuracy of over 90%. Object detection and recognition
is fast enough not to cause delays in the execution of robot
tasks.

VIII. OBJECT PROPERTIES

Often, the way in which a task is performed depends
on certain properties of the manipulated objects: Cutlery
should be searched for in other places than dairy products,
frozen items need to be put into the freezer, and fragile
items have to be handled with special care. For manufactured
products, such information can be acquired from online
shops like germandeli.com. We implemented a system that
automatically translates the category structure of the website
into a subclass structure in the knowledge base: For example,
Dallmayr Prodomo Coffee is represented as a sub-class of
Dallmayr coffee, Coffee (German Brands), Beverages, and
finally Groceries. The translation engine and the generated
ontology are publicly available as open-source software4.

In addition to the category structure, online shops also
provide detailed descriptions of the properties of products,
such as pictures, the perishability status, price, ingredients,
etc. Often, this information is already presented in a semi-
structured way in form of tables or image icons, so that
it can easily and automatically be extracted and added to
the knowledge base as properties of the respective object
classes. Since the semantic information and the pictures that
were used to construct the recognition model originate from
the same source, they can easily be combined and allow
the robot not only to recognize objects (see Section VII)
but also to know their properties and relations to other
objects. Otherwise, the problem of integrating knowledge
from different sources is much more difficult: Products in
an online shop are named differently than in WordNet, Cyc,
ehow.com or other sources, and the robot needs to find out
if they refer to the same thing.

Obviously, the website parser has to be adapted to different
web sites, matching rules or links to existing knowledge need
to be added manually, but otherwise, this semi-automatic im-
port generalizes to different information sources and greatly

3http://ias.cs.tum.edu/download/semantic-3d
4http://code.in.tum.de/pubsvn/knowrob/tags/latest/comp germandeli



speeds up the generation of large knowledge bases. Using
only the germandeli.com website, we generated an ontology
of more than 7,000 object classes including their properties
which the robot can both recognize and reason about.

IX. DISCUSSION

The approaches mentioned above are only first steps
towards robots that can competently acquire and execute
everyday manipulation tasks. In our ongoing research, we are
developing mechanisms for (semi-)autonomously acquiring
the knowledge required for such tasks. However, there are
still many gaps, i.e. pieces of knowledge that we did not
find a source for, or sources of information that could not be
used completely. Especially understanding longer, complete
sentences that are not explicitly written for being understood
by robots remains a challenging problem and requires more
sophisticated natural language processing techniques than we
have used so far. Another problem is the reliable disambigua-
tion of natural language information, taking all available
sources of knowledge into account. We expect results from
the area of natural language processing to help with these
problems.

While the interest in using web information for robotics
has increased over the past years, most of the systems use
only isolated pieces of information like the set of objects
in task instructions [27] or single statements in the OMICS
database [26]. This is definitely a good start and shows both
the feasibility and usefulness of extracting information from
web sources. However, in order to have a robot perform
realistic tasks mainly based on information on the web, these
single pieces have to be put in relation, and the completeness
of information becomes an important issue. Therefore, more
research is needed to find suitable representations to integrate
different sources of knowledge – a task we are using the
KNOWROB knowledge base for.

We hope that more researchers will start to work on these
topics to enable robots to acquire knowledge from the web
and to remove one important bottleneck that keeps robots
from skilled everyday manipulation: the lack of knowledge.
We expect the web to become an important source of knowl-
edge for autonomous robots, though it cannot be the only
one. Some kinds of information are hard to find on websites,
others depend on the robot’s environment or the preferences
of the humans it interacts with. So the web knowledge
will have to be complemented by information obtained from
dialogs with humans, by learning from experience, and by
teaching and imitation.
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