
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Intelligent Autonomous Systems Group

Learning Where Objects Are –
Organizational Principles in Human

Environments

Das Lernen von Aufbewahrungsorten –
Organisationsprinzipien in menschlichen

Umgebungen

Master’s Thesis in Informatik

Author: Martin J. Schuster, M.Sc.
Supervisor: Prof. Michael Beetz, Ph.D.
Advisors: Dipl-Inf. Dominik Jain

Dipl-Ing. Moritz Tenorth
Dejan Pangercic, M.Sc.

Submission Date: 27.04.2011

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst
und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master’s thesis only
supported by declared resources.

München, den 27.04.2011

Martin Schuster

Zusammenfassung

Für unterstützende Robotersysteme stellt der Transport von Objekten in mensch-
lichen Alltagsumgebungen eine wichtige Aufgabe dar, für die auf der technischen
Ebene erste zweckmäßige Lösungen existieren. Als eine von vielen komplexen In-
ferenzaufgaben gewinnt dabei die Fragestellung, wo Objekte aufzunehmen und wo
sie abzustellen sind, zunehmend praktische Bedeutung. In dieser Arbeit betrachten
wir die Identifizierung einer Organisationsstruktur in menschlichen Umgebungen,
d.h. die Frage nach Organisationsprinzipien, welche es einem Roboter erlauben zu
inferieren, an welchem Ort er am besten ein bestimmtes, neues Objekt platzie-
ren oder nach Objekten eines bestimmten Typs suchen sollte, gegeben vergangene
Beobachtungen über die Platzierung anderer Objekte in der Umgebung. Diese Fra-
gestellung kann als Klassifizierungsaufgabe formuliert werden. Wir sind der Auf-
fassung, dass Organisationsprinzipien durch einen Begriff von Ähnlichkeit zwischen
Objekten bestimmt sind und präsentieren eine empirische Analyse der Wichtigkeit
verschiedener solcher Merkmale in Datensätzen, welche die Organisationsstruktur
in Küchen beschreiben. Um Ähnlichkeiten als kontinuierliche Features in proba-
bilistischen Frameworks modellieren zu können, erweitern wir zwei probabilistische
Modellierungsmethoden, den naive Bayes Klassifikator und Markov Logic Networks,
um ihre Parameter mit weichen Evidenzen lernen zu können. Wir vergleichen ver-
schiedene Methoden zur Lösung der oben genannten Klassifiktationsaufgabe und
erreichen dabei durchschnittliche Genauigkeiten von mindestens 79% in allen Sze-
narien. Wir zeigen dadurch, dass sich Ontologie-basierte Ähnlichkeitsmaße gut als
hochdiskriminative Features für diese Aufgabe eignen. Wir haben unsere erfolg-
reichsten Klassifikatoren in das KnowRob Wissensverarbeitungsystem integriert
und stellen damit eine Open Source Implementierung bereit, die als Teillösung für
komplexe Inferenzaufgaben in Robotersystem einfach zu integrieren ist.

Abstract

In the context of robotic assistants in human everyday environments, pick and place
tasks are beginning to be competently solved at the technical level. The question of
where to place objects or where to pick them up from, among other higher-level rea-
soning tasks, is therefore gaining practical relevance. In this work, we consider the
problem of identifying the organizational structure within an environment, i.e. the
problem of determining organizational principles that would allow a robot to infer
where to best place a particular, previously unseen object or where to reasonably
search for a particular type of object given past observations about the allocation of
objects to locations in the environment. This problem can be reasonably formulated
as a classification task. We claim that organizational principles are governed by the
notion of similarity and provide an empirical analysis of the importance of various
features in datasets describing the organizational structure of kitchens. In order to
model similarities as continuous features within probabilistic frameworks, we extend
two probabilistic modeling methods, naive Bayes classifiers and Markov Logic Net-
works, to handle soft evidence during parameter learning. For the aforementioned
classification tasks, we compare classification methods, reaching average accuracies
of at least 79% in all scenarios. We thereby show that, in particular, ontology-based
similarity measures are well-suited as highly discriminative features. We integrated
the most successful variants of our new algorithm into the KnowRob knowledge
processing system to provide an open source solution that is easily applicable for
high-level reasoning tasks in robotic systems.

Acknowledgments

I thank Prof. Michael Beetz and my advisors, Dominik Jain, Moritz Tenorth and
Dejan Pangercic for their great support throughout this work. We thank Prof. Char-
lie Kemp for many helpful discussions on organizational principles, our colleagues
who provided kitchen images for our analysis and everyone who contributed to our
kitchen datasets.

Contents

Table of Contents vi

List of Figures vii

1 Introduction 1
1.1 Organizational Structure in Kitchen Environments 2
1.2 Ontologies . 3
1.3 Contributions . 4
1.4 Related Work . 5
1.5 Overview . 6

2 Organizational Principles 7

3 Datasets 9
3.1 Kitchen Mockups . 9
3.2 Real Kitchens . 11

4 Probabilistic Modeling Methods 12
4.1 Probabilities and Degrees of Truth 13
4.2 Soft Evidence . 14
4.3 Naive Bayesian Model . 14

4.3.1 Discretization . 16
4.3.2 Approximation as Gaussian 16
4.3.3 Soft Evidence . 16

4.4 Markov Logic Networks (MLNs) . 18
4.4.1 Markov Networks . 19
4.4.2 Definition and Semantics . 20
4.4.3 Inference . 21

4.4.3.1 Exact Inference . 21
4.4.3.2 Approximate Inference (MC-SAT) 22
4.4.3.3 Inference with Soft Evidence 24

4.4.4 Parameter Learning with Hard Evidence 24
4.4.4.1 Log-Likelihood . 25
4.4.4.2 Pseudo-Log-Likelihood 26
4.4.4.3 Computation of Formula Frequencies 28

Contents

4.4.5 Parameter Learning with Soft Evidence 28
4.4.5.1 Log-Likelihood with Weighting of Formulas (LL-ISE) 29
4.4.5.2 Pseudo-Log-Likelihood with Weighting of Formulas

(PLL-ISE) . 31
4.4.5.3 Log-Likelihood with Sampling and Weighting of

Formulas (SLL-ISE) 32
4.4.5.4 Log-Likelihood with Double Sampling and Weight-

ing of Worlds (DSLL-WW) 34
4.4.5.5 Further Approaches 35

4.4.6 Comparison . 37
4.4.7 Example and Discussion . 37

5 Learning Organizational Principles 41
5.1 Features . 41
5.2 Classifiers . 44

5.2.1 Maximum WUP Similarity 44
5.2.2 Decision Trees . 45
5.2.3 Boosted Decision Trees . 45
5.2.4 Support Vector Machines (SVM) 45
5.2.5 Naive Bayes . 45
5.2.6 Markov Logic Networks . 46

5.2.6.1 MLN Using Similarity to One Location 47
5.2.6.2 MLN Using Similarity to All Locations 48
5.2.6.3 MLN Using Pairwise Similarities between Objects . 49
5.2.6.4 Further Modeling Techniques 49
5.2.6.5 Challenges . 50

5.3 Organizational Principles: Feature Importance Measure 51

6 Evaluation 53
6.1 Experimental Setup . 53
6.2 Results and Discussion . 53

7 System Integration 59

8 Conclusion and Future Work 63

Bibliography 64

vii

List of Figures

1.1 Examples for groups of objects found in several kitchens 2
1.2 Excerpt of the ontology generated from the category structure of the

germandeli.com shopping website. 4

2.1 Further examples for groups of objects found in several kitchens . . 8

3.1 Large kitchen mockup with objects placed at twelve different locations 10
3.2 Small kitchen mockup with objects placed at six different locations 10
3.3 Small excerpt from our kitchen ontology, containing concepts used in

our real kitchen datasets . 11

4.1 Naive Bayesian classifier as a Bayesian Network: X1, X2, . . . XN are
conditionally independent given the class C 15

5.1 Example for path lengths used to calculate the WUP-Similarity . . 42
5.2 Visualization of pairwise distances between concepts, based on the

WUP similarity. Each shape/color indicates a location in the kitchen. 44
5.3 Graphical representation of a discrete naive Bayes model for our

mockup kitchen data set with three exemplary (conditional) prob-
ability tables . 46

6.1 Average feature importance (IDF (L)) for the 12 different locations (x-
axis) in the mockup kitchen dataset. High values indicate structure
at a particular location with respect to a particular group of features. 57

6.2 Mean and standard deviation of the Hellinger distance-based impor-
tance measure HD (defined for feature groups by taking the average)
for the ten kitchens in our mockup kitchen dataset 58

6.3 Mean and standard deviation of the Hellinger distance-based impor-
tance measure HD (defined for feature groups by taking the average)
for the two kitchens in our real kitchens dataset 58

7.1 System overview: Integration of our algorithm in the KnowRob
knowledge processing system . 59

7.2 Lab kitchen (KnowRob 3d visualization), the inferred best storage
location for coffee filters is highlighted in blue 60

1 Introduction

As many of the more fundamental problems in robotics (e.g. with regard to per-
ception, navigation and motion planning) are being solved to a degree where we
can consider the respective components to be sufficiently reliable to form the ba-
sis for complex tasks, the high-level reasoning capabilities of robots will become
increasingly important in the years to come.

In view of aging societies in many countries, the field of service robotics in general
and the field of robotic household assistants in particular demands our attention.
Whereas until now most robotics applications were restricted to well-defined in-
dustrial or laboratory environments, recent advances will allow new generations
of robots to leave these well-structured places and enter human-centered environ-
ments. This development started in the recent years with low-cost robots like the
Roomba1 that perform rather simple tasks such as vacuuming the floor in artificially
restricted spaces. But as research advances and hardware prices continue to drop,
more complex applications for autonomous assistive robots in human environments
are possible.

One reason why most of these robots are not on the market yet is that human en-
vironments still pose a huge challenge to state-of-the-art robot systems. Perception
and actuation in these unstructured and only partially-known environments are in-
herently difficult, but for competent behaviour in human everyday environments
to become a reality, also a deep understanding of human environments and the in-
teractions between entities within them is a necessary precodondition. Robots will
have to reason about everyday environments, the containers and objects these are
likely to contain, the properties and functions of objects and their relationships to
tasks and other objects in order to achieve competent problem-solving behaviour.

A multitude of research questions arise, out of which only a tiny subset has yet
been addressed. With pick and place tasks being addressed by many researchers at
the technical level, the question of where to place objects or where to pick them up
from, among other higher-level reasoning tasks, gains practical relevance in robotic
applications.

1see http://www.irobot.com/

1. Introduction

1.1 Organizational Structure in Kitchen
Environments

In this work, we consider the problem of identifying the organizational structure
within an environment, i.e. the problem of determining organizational principles
that would allow a robot to infer where to best place a particular, previously unseen
object or where to reasonably search for a particular type of object given knowledge
about the object type and past observations about the allocation of objects to
locations in the environment. In particular, we consider kitchen environments in
which various utensils, food preparation devices, foodstuffs and food ingredients
are typically assigned to storage locations such as cupboards, drawers, refrigerators
and working surfaces, see Figure 1.1.

Given a set of previously observed objects with their associated storage locations,
the robot is to acquire models that would allow it to, for instance, reasonably
allocate each of the objects it might find within a shopping bag to appropriate
storage locations. Another task would be to infer the most probable location(s)
where to find a specific object, given a model based on observations of the locations
of other objects in the environment. These observations could, for example, have
been made at a previous point in time when the object in question was not yet
present.

As far as the granularity at which we solve the problem is concerned, we distinguish
only between the various storage locations but not the placement within these
storage locations. We leave the latter as a topic for future research, as it is sometimes
relevant in real-world environments. Our analysis of organization principles showed
that, for example, some people prefer to store foodstuffs that will expire sooner at
more accessible front locations.

We believe that for an organizational principle to be discernable (to robots or hu-
mans) at any given location, the objects placed at the location must share certain

Figure 1.1: Examples for groups of objects found in several kitchens

2

1. Introduction

characteristics, i.e. the entropy of the random variable describing the distribution
of object properties – in some attribute space – should ideally be low. In order to
identify an organizational principle, we must either make direct use of a suitable
attribute space or consider an aggregate in the form of a similarity measure. At the
global level, an organizational structure will be identifiable if the attribute subspaces
pertaining to any two locations are sufficiently different from each other.

1.2 Ontologies

A robot system that is to learn and reason about the structure of its environ-
ment and the objects located therein requires large amounts of background knowl-
edge about all the objects that it could potentially encounter. Such background
knowledge can be conveniently represented within an ontology containing concepts
(classes) for all the relevant types of objects as well as their attributes and relations
between objects.

We use the KnowRob ontology [1], which incorporates parts of the OpenCyc up-
per ontology[2] and extends it with more detailed knowledge about the household
domain. For the task at hand, we require the ontology to contain additional infor-
mation about a multitude of manufactured products found in kitchen environments,
particularly foodstuffs. Manually encoding such knowledge for hundreds of objects
is a tedious task, but it can be automated: Online shops provide very similar infor-
mation, though not represented as an ontology. We use a system that automatically
translates the category structure of a shopping website, in our example german-
deli.com, into a class taxonomy in the knowledge base2: For example, Dallmayr
Prodomo Coffee is represented as a sub-class of Dallmayr coffee, Coffee (German
Brands), Beverages, and finally Groceries. Using only the germandeli.com website,
we obtained an ontology that extends the KnowRob ontology with knowledge
about more than 7,000 manufactured products (see Figure 1.2 for a small excerpt).

In addition to the category structure, online shops also provide detailed descriptions
of the properties of products, such as the perishability status, price, ingredients, etc.
This information is usually presented in a semi-structured way in the form of tables
or symbols, which can automatically be translated into attributes of the respective
object classes. The product images found on the product page can be used to
construct recognition models that allow the robot to both detect these objects and
to reason about their properties [3].

2 The translation engine and the generated ontology are publicly available as open-source software
at http://code.in.tum.de/pubsvn/knowrob/tags/latest/comp_germandeli

3

1. Introduction

Figure 1.2: Excerpt of the ontology generated from the category structure of the
germandeli.com shopping website.

1.3 Contributions

Our key contributions in this work fall into two categories. First, we present exten-
sions to two probabilistic machine learning techniques to handle soft evidence:

• an extension of naive Bayes classifiers for soft evidence inference and soft
evidence parameter learning;

• an extension of Markov Logic Networks for soft evidence parameter learning,
providing several new weight learning algorithms;

• the implementation of the Markov Logic Network learning algorithms within
the Probcog [4] framework;

4

1. Introduction

Second, we applied these methods (among others) to model the organizational prin-
ciples within a kitchen environment. As key contributions, we present:

• the selection of suitable attributes and similarity measures derived from an
ontological knowledge base, which we partly build up based on web resources;

• an analysis of the performance of various modelling and classification schemes
with regard to the aforementioned allocation problem;

• an analysis of the degree to which organizational principles can be identified
at the locations within the kitchens we considered, and the degree to which
there is a global structure that sets apart the locations;

• an open source implementation of our algorithm to solve the object allocation
problem, integrated into the KnowRob [1] knowledge processing system.

1.4 Related Work

There is a large body of related work that considers organizational principles at
a fairly coarse level, seeking to exploit knowledge about object-room associations
for the purpose of room classification in the context of mapping and navigation [5]
or, inversely, visual search for objects given the classes of rooms within a map [6],
or both [7]. Object-Room associations are typically described using logical knowl-
edge, e.g. represented in a description logics knowledge base [8, 6], and/or using
conditional probability distributions [7, 9].

The problem we consider is qualitatively different, because we do not assume that
there is a given, globally applicable principle according to which an environment is
likely to be structured, regardless of, for example, the personalities and preferences
of the environment’s inhabitants. Instead, we are interested in recovering principles
based on observations of a single environment in order to generate a model that
reflects its idiosyncrasies. Moreover, we disregard the types of containers/rooms and
therefore do not establish object-container relationships but rather object-object
relationships that induce local clusterings. We thereby want to capture the unique
characteristics of each place instead of assigning concepts to places [10] which are
usually defined by a single criterion, e.g. by the concept “Bottle-Group”.

The authors of [11] use pairwise similarities between household objects to distinguish
between object categories in the context of a odd one out task, using features
created from auditory and proprioceptive sensory feedback of their robot. This

5

1. Introduction

shows that “natural” object categories (which correspond to higher-level classes in
a taxonomy) are related to the perceptual similarities between objects, so we can
regard the similarity between classes of objects within a taxonomy as an aggregate
of perceptual similarities.

1.5 Overview

In the following section, we present an analysis of organizational principles in the
context of kitchen environments. Section 3 is concerned with the datasets we used to
evaluate our methods. In Section 4 we describe two probabilistic modeling methods,
the naive Bayes model and Markov Logic Networks, and introduce our extensions
that allow these models to handle soft evidence. In Section 5 we present our methods
to model the kitchen environment, including definitions of the features we use for
the classification task of allocating objects to locations and definitions of measures
for the importance and discriminative power of the various features. We discuss the
evaluation of our approach on the aforementioned datasets in Section 6. In Section 7
we describe the integration of our algorithm within the KnowRob knowledge pro-
cessing system and its usage in the context of solving a higher-level robot task.
In the final section, we draw conclusion about the applicability and discriminative
power of our similarity measures and give an outlook on interesting topics for future
work.

6

2 Organizational Principles

To acquire a notion of what might constitute an organizational principle in real-
world kitchen environments, we analyzed photographs of kitchens as well as blogs1
and videos from the Internet. Focusing on the questions of where objects are located,
which objects are grouped together, and why, our analysis of this data led to the
following prevalent organizational principles:

• Class: Most places contain objects that belong to similar classes as they might
appear in a taxonomy. For example, there is often a distinction between food
and non-food items. More specifically, most people store, for example, pre-
pared food, ingredients, spices, dishes, cutlery or kitchen utensils at separate
locations (see e.g. Figure 1.1 and Figure 2.1).

• Physical Constraints: Objects are often placed with respect to constraints
imposed by their physical properties. For example, large items can obviously
be placed only at locations that provide sufficient space, perishable items are
stored in a fridge or freezer, objects that can easily be stacked (e.g. different
kinds of plates, see Figure 1.1 and Figure 2.1) are placed on top of each other.

• Purpose: Objects are often grouped according to the purpose they serve. For
example, sugar and coffee beans are used to make coffee and therefore may
be placed close together. Similarly, all ingredients used for baking are often
found in the same place. In Figure 1.1, objects needed to prepare hot drinks
are grouped together (e.g. teabags, coffee and coffee filters).

We also discovered the following additional organizational principles but found them
to be less relevant:

• Packaging: Oftentimes, large packs of products not intended for daily use are
kept in stock, located at different places than single products intended for
immediate use. For instance, a single bottle of beer may be kept in the fridge
while a crate may be stored elsewhere.

1e.g. http://cakescraps.wordpress.com/2010/01/02/organizing-your-fridge/ and
http://www.beruly.com/?p=279

2. Organizational Principles

Figure 2.1: Further examples for groups of objects found in several kitchens

• Safety: Some people place items in lower compartments because they might
cause injury as a result of dropping from a high location. Similarly, food items
are not usually stored together with items that could spoil them.

The principles pertaining to class, physical constraints and packaging were also
considered to be relevant for object placement in grocery stores [12].

All the above criteria can be reasonably translated into similarity measures between
pairs of objects.

8

3 Datasets

We gathered data about the organization within twelve different kitchen environ-
ments. Ten of these were acquired by simulating the process of placing objects within
a fictitious kitchen, two were obtained by carefully annotating the object locations
in two real kitchens. We divided each kitchen environment into locations, a location
representing a container or tabletop, e.g. a cupboard, a drawer, the fridge, etc.

3.1 Kitchen Mockups

From our extended KnowRob ontology, we selected 66 different concepts to define
an exemplary kitchen inventory with a total of 152 objects (instances of concepts).
We printed each concept including a product image and the number of its instances
on a small piece of paper. We also printed two different sketches of kitchen layouts
on large sheets of paper, marking the available containers (cupboards, drawers,
fridge) with numbers indicating locations where objects may be placed. The first
kitchen mockup had twelve different locations, the second six. We then asked ten
persons, five for each of the two layouts, to place the 66 pieces of paper representing
the 152 objects at the different locations, grouping them together as if they were to
establish an order in their own new kitchen. Two examples from these datasets can
be seen in Figure 3.1 and Figure 3.2.

We then annotated the mapping of products to locations for each of our mockup
kitchen datasets Dm1 to Dm10 in a database that we used for our evaluation (see
Section 6). The layout itself served only as a visual aid for our test subjects, poten-
tially improving their impression of acting in a real kitchen and therefore the quality
of the data. We did not use information about the proximity of different places or
the proximity of places to devices like the oven or sink, although this information
might give further clues for reasonable object placement and could constitute an
interesting subject for future research.

3. Datasets

Figure 3.1: Large kitchen mockup with objects placed at twelve different locations

Figure 3.2: Small kitchen mockup with objects placed at six different locations

10

3. Datasets

3.2 Real Kitchens

We gathered one additional dataset from a real kitchen, where we manually anno-
tated all objects along with the location at which they were placed. We then added
any missing product classes to our kitchen ontology. We show a visualization of a
small excerpt of it in Figure 3.3. Our real kitchen datasets Dr1 and Dr2 contain
166 and 87 different classes with totals of 408 and 149 objects placed at 19 and
15 different locations respectively. In the real kitchens, not all objects belonging to
a single class were placed at the same location, because the owners distinguished
between different states of objects, e.g. partially used products and new products
which do not require cooling. In our dataset, we did not consider this distinction,
moving all objects of the same class to a single location (less than seven objects
relocated in each dataset).

Figure 3.3: Small excerpt from our kitchen ontology, containing concepts used in
our real kitchen datasets

11

4 Probabilistic Modeling Methods

In this section, we present two probabilistic models, the naive Bayesian model (Sec-
tion 4.3) and Markov Logic Networks (Section 4.4), which we want to apply to
model our kitchen environment and solve the classification task therein of allocat-
ing objects to locations.

Probabilistic models have several advantages over other classifiers like decision trees
or support vector machines. They give us not only a single winner class but a
probability distribution over all classes. In our kitchen scenario, this can be useful
if the classification is only a subtask in a larger probabilistic framework, in which
the final placement location can depend on other factors than optimality of the
placement itself. We could, for example, consider all locations with a probability
exceeding a certain threshold as sufficiently good and then choose the one that is
easiest to reach for the robot or the one that provides the most free space within.

We will only consider generative probabilistic models here. They enable us to solve
other additional challenges than just the classification task. The naive Bayesian
classifier for example can give us insight in the organizational structure present at
a particular location by looking at the probabilities of the feature values, given the
location. Markov Logic Networks are able to perform joint inference for the locations
of multiple objects. Complex models might be applied to answer further questions
that could be of interest to an assistive robot acting in a kitchen environment, for
example the inference of the types of containers, given their content and spatial
relations with respect to each other.

We extend the naive Bayesian model and Markov Logic Networks to handle soft
evidence during parameter learning and apply this extension as one way to handle
similarities as continuous features within these probabilistic frameworks.

4. Probabilistic Modeling Methods

4.1 Probabilities and Degrees of Truth

We want to incorporate continuous features in our probabilistic frameworks in order
to model measures of similarity. It is therefore important to be aware of different
ways how to interpret continuous variables in that context. Assume we have a
proposition R: “The objects O1 and O2 are similar”. We now have to distinguish
between the probability P (R) ∈ [0; 1] to which this statement is true and the degree
of truth T (R) ∈ [0; 1] of this statement. If on the one hand we look only at the
probability, we treat the statement as boolean and P (R) = 1 would mean that the
statement is certainly true, P (R) = 0 that it is certainly false and P (R) = 0.5 that
we have no knowledge about it whatsoever. If on the other hand we only consider
the degree of truth of this statement, T (R) = 1 means that the objects are most
similar, T (R) = 0 that they are not similar at all and T (R) = 0.5 that the objects
are a bit similar. Degrees of truth are oftentimes handled in fuzzy logic frameworks
whereas probabilities are handled in probabilistic frameworks.

In [13], the author proposes a theoretical approach on how to combine the prob-
abilities of a proposition R and degrees of truth of R to degrees of belief of R as
the expected value of its degree of truth. The degree of belief in a proposition R
is defined in this context as the strength of tendency for an agent to act as if R.
Although we believe this to be a reasonable theoretical approach, the author does
not give any methods on how to model dependency between variables and then
perform complex inference tasks in this framework. The Probabilistic Similarity
Logic, presented in [14], is a practical approach to incorporate degrees of truth into
a probabilistic framework, with special features for set semantics relevant in the
context of similarities, although it does not allow probabilistic (soft) evidence. We
did not evaluate this approach on our datasets as the authors did not release their
implementation yet, but we see it as a promising method to incorporate in future
work.

In the following, we therefore will treat all of our continuous features as probabilities
for boolean variables and also consider degrees of belief solely as probabilities. We
want to use continuous features to model similarities between objects, which intu-
itively correspond to degrees of truth (two objects are similar to a certain degree).
We are aware that we therefore approximate degrees of truth (our similarity values)
by probabilities, but we believe that in our models the potential error induced by
this is low enough for them to be still useful in practice.

13

4. Probabilistic Modeling Methods

4.2 Soft Evidence

Assume we have random variables Xe for which the evidence e (our observations)
may be uncertain. Then we associate with each possible assignment Xe = xe a
degree of belief P (Xe = xe) ∈ [0, 1]. The degree of belief, which is a probability
here, can be interpreted either (1) as the reliability of an observation indicating
Xe = xe or (2) as the degree to which Xe = xe should be believed. The first case
(1) leads to virtual evidence whereas the second (2) is referred to as soft evidence.
A further discussion about the differences can be found in [15]. We will here focus
on the case of soft evidence (2).

Soft evidence gives a constraint on the probability distribution over assignments to
(subsets of) Xe, denoted as P (Xe | e). For a single boolean random variable Xi

with the distribution (pi, 1− pi) this simply requires a variable Xi to be true with
a probability of pi and false with 1 − pi. Several pieces of soft evidence usually
influence each other and therefore cannot be treated independently without making
simplifying assumptions.

4.3 Naive Bayesian Model

A naive Bayesian classifier [16, 17] is a simple probabilistic classification model.
It is based on Bayes’ theorem and assumes strong (naive) independence between
the features. Given class labels C and a vector of features (random variables) X =
{X1, . . . , XN}, we assume that the value (presence/absence in the binary case) of a
feature is independent of all other features, given the class. With x = (x1, . . . , xn)
being the vector of feature values for X we can therefore compute P (X = x | C = c)
given a particular class c as

P (X = x | C = c) =
N∏
i=1

P (Xi = xi | C = c) (4.1)

To compute the class probability of a given class C = c, we simply apply Bayes’
rule:

P (C = c | X = x) =
P (X = x | C = c) · P (C = c)

P (X = x)
(4.2)

Usually we compute the class probabilities for all classes in C. As the sum of all
class probabilities P (C = c | X = x) has to be one, we can see the denominator of
Equation 4.2 as a normalization factor and do not have to model it explicitly. For

14

4. Probabilistic Modeling Methods

solving the classification task, i.e. for returning the maximum a posteriori (MAP)
hypothesis c, given the feature values x, we can simply compute

arg max
c∈C

P (X = x | C = c) · P (C = c) (4.3)

A naive Bayesian classifier can also be interpreted as a very simple Bayesian Net-
work, see Figure 4.3.

C

X1 X2 XN...

Figure 4.1: Naive Bayesian classifier as a Bayesian Network: X1, X2, . . . XN are con-
ditionally independent given the class C

When learning the parameters of a naive Bayesian classifier, we simply count the
occurrences of all class- and feature-value combinations. Computing the relative
frequencies of the classes and feature values in our training data allows us to make
a maximum likelihood estimation for P (C = c) and P (X = x | C = c), which
we usually note as (conditional) probability tables. In case some of these relative
frequencies would be zero, we approximate them with a very small probability (e.g.
10−3) to avoid the probability of a class c becoming zero for a feature vector x
when a single feature value xi ∈ x did not appear in the training data for that
particular class. Another method to handle this would be to make an a posteriori
(MAP) estimation by applying a prior probability, e.g. by adding pseudo-counts to
the relative frequencies for all feature-value/class combinations (for all entries in
the conditional probability tables).

In a naive Bayesian classifier there are several different ways to treat continuous fea-
tures. The authors of [18] compare some of these methods, including discretization
and the approximation by a normal distribution. They conclude that no method
systematically outperforms the others and propose a strategy to automatically se-
lect the best one. [16] presents an empirical study on the influence of dependencies
on the error of naive Bayesian classifiers and conclude that they work best not only
on completely independent features but also on functionally dependent features.
We therefore present three different techniques and compare these variants in our
tests.

15

4. Probabilistic Modeling Methods

4.3.1 Discretization

The simplest way is to discretize the continuous variables. This is done prior to
learning/testing using standard discretization methods, e.g. k-means clustering of
the feature values.

4.3.2 Approximation as Gaussian

A standard method to handle continuous variables is to approximate their distri-
butions as a single Gaussian for each feature:

P (X = x | C = c) = N (x, µ, σ) =
1√
2πσ
· exp

(
−(x− µ)2

2σ2

)
(4.4)

The maximum likelihood estimation of the distribution parameters from the training
samples is straightforward. The mean µ of the Gaussian corresponds to the average
value, the standard deviation σ to the standard deviation of the training samples.

A more complex model would result from the usage of kernel methods instead of
a single Gaussian to approximate the distribution of the continuous features, for
example the nonparametric kernel density estimation presented in [17].

4.3.3 Soft Evidence

We extended the naive Bayesian classifier to handle soft evidence in inference and
learning by applying soft evidential updates (analogous to [15]) to compute posterior
probabilities.

Assume we split our set of random variables X into two disjunct subsets X =
Xh ∪ Xs with Xh containing the variables with given hard evidence Xh and the
variables with given soft evidence Xs, and e being our vector of evidence values.
For hard evidence, e contains the values of xh, for soft evidence, e contains the
probability for each discrete value xi ∈ dom(Xi) for each variable Xi ∈ Xs.

The probability P (Xs = xs | e) is implicitly given through the soft evidence and the
learned model. In order to compute P (C = c | e), we could use a sampling based
method like Gibbs sampling or MCSAT with extensions to handle soft evidence (see
[15]). Instead we make an approximation here and assume the independence of our

16

4. Probabilistic Modeling Methods

pieces of soft evidence. We therefore can write the probability defined by our soft
evidence for a particular vector of values xs as

P (Xs = xs | e) =
∏

Xi∈Xs

P (Xi = xi | ei) (4.5)

In the case of the naive Bayesian classifier this independence assumption yields a
computation that is similar to using virtual evidence.

We can then calculate the class probability for a class c given our evidence e as the
sum of the conditional probabilities P (C | Xh, Xs) for all values in the domain of
Xs, weighted by the given soft evidence:

P (C = c | e) = P (C = c | Xh = xh, e)

=
∑

xs∈
∏

Xi∈Xs
dom(Xi)

P (C = c | Xh = xh, Xs = xs) · P (Xs = xs | e)

=
∑

xs∈
∏

Xi∈Xs
dom(Xi)

P (Xh = xh, Xs = xs | C = c) · P (C = c)

P (Xh = xh, Xs = xs)
· P (Xs = xs | e) (4.6)

This is essentially an instance of Jeffrey’s rule for updating beliefs with soft evi-
dence [15].

In order to handle soft evidence during parameter learning, we use soft counts when
approximating P (Xi = xi | C = c) with the relative frequencies by computing the
sum of the soft evidence values for a variable Xi, given a class c. With Tc being the
evidence values for training samples of the class c, we can then compute

P (Xi = xi | C = c) =

∑
e∈Tc P (Xi = xi | ei)

|Tc|
(4.7)

Hard evidence can be seen as a border case of the soft evidence computation. For
a hard evidence variable Xi, P (Xi = xi | ei) is either 1 if the feature has the value
xi or 0 otherwise. The sum in Equation 4.7 is therefore equal to the number of
times the feature value xi appears in the training data. P (Xi = xi | C = c) is then
the relative frequency of the value Xi = xi in samples for the class c, equal to the
normal computation in the hard evidence case.

17

4. Probabilistic Modeling Methods

4.4 Markov Logic Networks (MLNs)

Markov Logic Networks [19, 20, 21] represent a powerful and coherent probabilistic
framework for learning and inference tasks. Many other models like Bayesian Net-
works, Markov Networks, first-order logic, etc. can be transformed or incorporated
into MLNs.

Markov Logic Networks are a concept that combines the semantics of probabilistic
graphical models with first-order logic (FOL). In FOL, each formula is either true
or false. The main idea of MLNs is to allow soft constraints on FOL formulas by
assigning a weight wi to each formula Fi. This allows the consideration of a distri-
bution over possible worlds X . A world x ∈ X may violate these soft constraints. Its
probability then depends on the strength of the satisfied and violated constraints
which is given through their weights. A violation of constraints with high weight
results in a low probability for the corresponding world, whereas the violation of
constraints with low weight or no violation of any constraints results in a higher
probability for the corresponding world.

The set of possible worlds X is defined by the formulas in a first-order logic knowl-
edge base and a finite set of constants C which represent the entities in the world.
Each predicate in the knowledge base can be grounded with each of the constants
in C. For example, given the binary predicate similar(x,y) and C = {A,B}, the
possible groundings are: similar(A,A), similar(A,B), similar(B,A), similar(B,B). In
each possible world, each grounding is either true or false. With N being the number
of possible groundings, there are therefore 2|N | possible worlds in X . Each of the N
groundings can be seen as a binary random variable in a set X = {X1, · · · , XN}.
Each possible world is then an assignment of binary truth values to all of these
variables. A Markov Logic Network defines a probability distribution over the set
of possible worlds X , which are the possible assignments of truth values to the bi-
nary random variables Xi ∈ X. This probability distribution can be represented by
a Markov Network (MN), a probabilistic graphical model, which is parameterized
using the weights from the MLN.

As Markov Logic Networks can therefore be seen as templates for the construction
of Markov Networks, we give a short introduction to Markov Networks in the next
section. We give a formal definition of MLNs in Section 4.4.2 and explain exact and
approximative inference methods in Section 4.4.3. In Section 4.4.3.3, we discuss in-
ference with soft evidence. The following two Sections present known algorithms for
parameter learning (Section 4.4.4) and our new methods that can also handle soft
evidence (Section 4.4.5). We then compare the new methods against each other in
Section 4.4.6 and explain some key differences on the basis of a small example in
Section 4.4.7. There are also methods to learn the structure of a Markov Logic Net-

18

4. Probabilistic Modeling Methods

work. As we hand-model the MLN in our applications using our domain knowledge,
and as our contribution withing MLNs is in parameter learning methods, we will
not discuss structure learning here. More information on that topic can be found in
[20] and [22].

4.4.1 Markov Networks

Markov Networks (MN) or Markov Random Fields (MRF) [19, 20, 21, 23] are graph-
ical models that compactly represent the joint probability distribution of a set of
variables X = {X1, X2, ..., Xn}.

A Markov Network consists of

• a undirected graph G = (V = X,E). Every node in the graph represents a
variable, every edge {Xi, Xj} ∈ E a dependency between two variables. C is
the set of cliques of G. We only regard maximal cliques here.

• a set of potential functions φk (often referred to as factor potentials). For each
clique Ck with the variables {Xi1 , ..., XiNk

} the function φk maps the domain
of the clique Ck into the non-negative real numbers: φk : dom(Xi1) × ... ×
dom(XiNk

)→ R+
0

The joint probability distribution is given by

P (X = x) =
1

Z
·
∑
k

φk(x{k}) (4.8)

The product includes all cliques Ck of G, x{k} is the state of the kth clique in the
possible world x.

Z is a normalization constant. Let X be the set of all possible worlds. Then

Z =
∑
x∈X

∏
k

φk(x{k}) (4.9)

The set of potential functions φk maps every possible world x ∈ X to a value
vx =

∏
k φk(x{k}) ∈ R

+
0 . This value must be considered in relation to the values of

the other possible worlds. E.g. vx = 10, vx′ = 5 means that the world x is twice as
probable as x′.

19

4. Probabilistic Modeling Methods

Another widely used alternative representation of a Markov Network is the log-
linear model. Under the assumption that P (X = x) > 0 ∀x, the joint probability
distribution can be equivalently represented as

P (X = x) =
1

Z
· exp

(∑
i

wi · fi(x)

)
(4.10)

An exponential sum of weighted features is assigned to every possible world:

• fi: feature function of the ith feature, fi : ×k dom(Xk)→ {0, 1}

• wi: weight of the ith feature, wi ∈ R

The representation is equivalent to the one describe before if there is a feature fi
for every possible state x{k} of every clique Ck, associated with the weight wi =
log(φk(x{k})) (if φk(x{k}) is always > 0).

4.4.2 Definition and Semantics

A Markov Logic Network is defined as a set of pairs (Fi, wi) where Fi is a first-order
logic formula and wi ∈ R is the associated real-valued weight. It represents the
strength of the constraint that is represented by Fi. Together with a finite set of
constants C, a MLN L defines a ground Markov Network ML,C = (X,G) (using the
log-linear representation) as follows:

• X is a set of boolean variables. It contains one boolean variable for each
grounding of each predicate in L. The set of possible worlds X is therefore
defined as X = B |X|.

• G is a set of weighted ground formulas, given as pairs (F̂j, ŵj) It contains
one such pair for each grounding F̂j of each formula Fi in L with the weight
ŵj = wi. We define a feature f̂j : X → {0, 1} for each such pair. f̂j(x) is 1 if
F̂j is satisfied in the world x and 0 otherwise.

20

4. Probabilistic Modeling Methods

The probability distribution over all possible worlds is given by Equation 4.11, with
Z being a normalization constant. ni(x) is the number of true groundings of the
formula Fi in the world x.

P (X = x) =
1

Z
exp

(∑
j

ŵj f̂j(x)

)

=
1

Z
exp

(∑
i

wini(x)

)
=

exp
(∑

iwini(x)
)∑

x′∈X exp
(∑

iwini(x
′)
) (4.11)

If a formula Fi has infinite weight wi, it is deterministic and is therefore treated as
being a hard constraint, as in first-order logic.

4.4.3 Inference

Given a Markov Logic Network L and a set of constants C, we want to compute
the probability of arbitrary formulas. In addition we can have an optional evidence
e. It contains the truth values for all evidence formulas E. Therefore we ask the
following query: “What is the probability that F1 is satisfied, given the evidence
e?”.

4.4.3.1 Exact Inference

We can formulate the queried probability as P (F1 | e, L, C), given in Equation 4.12.
XF1 ⊆ X and Xe ⊆ X denote the subsets of possible worlds which satisfy the
formula F1 and assign the truth values in e to the formulas in E respectively.

P (F1 | e, L, C) = P (F1 | e,ML,C)

=
P (F1 ∧ e | ML,C)

P (e | ML,C)

=

∑
x∈XF1

∩Xe
P (X = x)∑

x∈Xe
P (X = x)

=

∑
x∈XF1

∩Xe
exp (

∑
iwini(x))∑

x∈Xe
exp (

∑
iwini(x))

(4.12)

This computation requires to sum over all the possible worlds in Xe, which is usually
very large for non-trivial cases (in case e is empty, there are |X | = 2|X| possible
worlds).

21

4. Probabilistic Modeling Methods

4.4.3.2 Approximate Inference (MC-SAT)

As exact inference is computationally intractable for most non-trivial cases, usually
approximative methods are used.

Gibbs sampling (widely used for normal Markov Networks) is very slow when our
model contains strong dependencies and does not converge for deterministic depen-
dencies. We therefore favor the MC-SAT (Markov Chain SATisfiability) [20] algo-
rithm which uses a slice sampling technique and combines MCMC (Markov Chain
Monte Carlo) with satisfiability (SAT) testing to achieve huge speedups compared
to Gibbs sampling. Slice sampling uses auxiliary variables to decouple the state
variables and thus allows rapid mixing.

We will give a short overview over MC-SAT in the following. First of all, two prepa-
ration steps have to be performed:

• Convert knowledge base (KB) to conjunctive normal form (CNF)
⇒ set of ground clauses {ck}

• Make all weights positive by negating formulas with negative weights
⇒ ∀k exp(wk) > 1

MC-SAT introduces an auxiliary variable uk for each ground clause ck. The main
idea is to link them (vector U) to the possible worlds (X), such that sampling from
X can be done by drawing from uniform distributions for the uk’s.

The joint probability distribution for X and U is given by

P (X = x, U = u) =
1

Z

∏
k

I[0;exp(fk(x)·wk)](uk) (4.13)

where

• I[a;b] is the indicator function: I[a;b](x) = 1 if x ∈ [a; b], else I[a;b](x) = 0.

• P (uk | x) is a uniform distribution over [0; exp(fk(x) · wk)]

• P (x | u) is a uniform distribution over the slice Xu ⊂ X with
∀k. 0 ≤ uk ≤ exp(fk(x) · wk).

Every possible world determines a set of possible values for the uk’s. If uk > 1, Xu
contains only worlds that satisfy ck. Therefore every assignment of U implies a set

22

4. Probabilistic Modeling Methods

of formulas M that have to be satisfied: M = {ck | uk > 1}. To draw samples from
P (X = x), we can just sample P (X = x, U = u) and ignore the values for u.

In every iteration of MC-SAT:

• If ck is not satisfied by the current state x(i):
draw uk uniformly from [0; 1]. Therefore uk ≤ 1 ≤ ewi (because all wi > 0)
⇒ no requirement for ck to be satisfied in the next state

• If ck is satisfied by the current state x(i):
draw uk uniformly from [0; ewk]. Therefore uk > 1 with probability ewk−1

ewk
=

1− e−wk

⇒ requirement for ck to be satisfied in the next state with probability 1−e−wk

To shorten this case differentiation, we can write that uk is drawn uniformly from
[0; ewk·fk(x)], because fk(x) is 1 if ck is satisfied in x, and 0 otherwise.

MC-SAT determines, in every iteration, a random subsetM of the currently satisfied
clauses that must be satisfied in the next state by sampling all auxiliary variables uk.
The size of each interval [0; ewk] is proportional to ewk and determines the probability
that a clause ck has to be satisfied.

The next state is then sampled uniformly from Xu = SAT (M), which is the set of
states that satisfy M . In this step, it is guaranteed that all hard constraints and
constraints given by the evidence are satisfied. In the end, P (q | e) ≈ c

n
is returned.

n is the total number of samples and c =
∏

i,x(i)|=q 1 the number of samples in which
x(i) |= q.

Algorithm 1: MC-SAT (clauses, weights, num_samples)
1: x(0) ← Satisfy(hard clauses)
2: for i← 1 to num_clauses do
3: M ← ∅
4: for all ck ∈ clauses satisfied by x(i−1) do
5: with probability 1− e−wk add ck to M
6: end for
7: sample x(i) ∼ USAT (M)

8: end for

SAT(M) can never be empty because it always contains at least the current state
x(i). MC-SAT is initialized with x(0) found by a satisfiability solver such that all
hard constraints (clauses with infinite weight) are satisfied.
USAT (M) is the uniform distribution over the set SAT(M). The uniform sampling

23

4. Probabilistic Modeling Methods

from this “slice” (Xu) is computationally expensive. It is usually done using the
SampleSAT algorithm which mixes WalkSAT (greedy) and simulated annealing
(random) steps, which represent a trade-off between fast but highly non-uniform
and slow but highly uniform sampling steps respectively. For more information on
SampleSAT, see [24].

MC-SAT generates a Markov chain for sampling that converges to the desired sta-
tionary distribution. In practice, we can therefore always make a trade-off between
the number of sampling steps and the accuracy of the results. More details on
MC-SAT can be found in [20].

Another option for inference, which we will not discuss further here, is lifted infer-
ence which tries to utilize recurring structures in the Markov Network by lifting the
inference problem to the level of first-order logic.

4.4.3.3 Inference with Soft Evidence

An extension of MC-SAT (see Section 4.4.3.2) to efficiently handle soft evidence
updates is presented in [15]. It is referred to as MC-SAT-PC (MC-SAT with pos-
terior Probability Constraints). The key idea is to track the relative frequency of a
soft evidence variable Xi throughout the sampling process. The soft evidence can
then be enforced by adding Xi or ¬Xi to the set M of constraints for the next
MC-SAT sampling step if the relative frequency deviates too much from the given
distribution.

4.4.4 Parameter Learning with Hard Evidence

In this and the next section, we want to explain how the weights of a Markov
Logic Network can be learned from training data in the case of hard evidence and
soft evidence, respectively. The training data is a set of formulas F and a training
database, consisting of a set of constants C and truth values for all ground atoms
that are defined by F and C. The training database thus defines a possible world.
We typically make the closed world assumption and thus assign each ground atom
that is not specified in the training database the truth value false to obtain a fully
specified training set of ground atoms.

In the context of maximum likelihood parameter learning, the goal is to find weights
w = (w1, . . . , wn) for the formulas in F such that the probability of the training
database is maximized in the resulting MLN ML,C .

24

4. Probabilistic Modeling Methods

We focus here on learning a generative model because we want to be able to ask
our model all the different possible types of queries, depending on what questions
and evidence we have in a particular task. For cases where the distinction between
evidence and query atoms is known a priori at learning time, discriminative learning,
as described in [20], would be the other option.

The maximization of the likelihood of the data given the model is usually done by
maximizing the log-likelihood [20, 21], as presented in the next section. A rough but
efficient approximation for this is the pseudo-log-likelihood. Further algorithms and
optimizations for parameter learning, including second order methods, are described
in [25].

4.4.4.1 Log-Likelihood

We want to maximize the probability P (X = x | w) of the possible world x given
by the training data. The weights w thereby define our current model during the
iterative maximization process. We will leave w out for brevity here and in the
following sections when defining the functions that are to be maximized for each
of the learning methods. Here we therefore just write P (x = x), which is given in
Equation 4.14.

P (X = x) =
exp (

∑
iwini(x))∑

x′∈X exp (
∑

k wknk(x
′))

=
1

Z
exp

(∑
i

wini(x)

)
(4.14)

From a computational point of view it is more convenient to maximize the log-
likelihood L(X = x) = logP (X = x), which yields the same results.

L(X = x) =
∑
i

wini(x)− log(Z) (4.15)

We can easily compute the gradient of L(X = x) as follows:

δ

δwi
L(X = x) = ni(x)−

∑
x′∈X

ni(x
′) · P (X = x′)

= ni(x)−
∑
x′∈X

ni(x
′) · exp (

∑
k wknk(x

′))∑
x′′∈X exp (

∑
k wknk(x

′′))
(4.16)

We can then use a standard gradient ascent method like the L-BFGS (Limited
memory Broyden-Fletcher-Goldfarb-Shanno) algorithm to conveniently calculate
arg maxw L(X = x | w) using the gradient. In practice, however, this method has

25

4. Probabilistic Modeling Methods

only limited use as counting all true groundings of a formula in a database is in-
tractable in all but the smallest domains (#P complete, see proof in [19]). We could
approximate this by applying uniform sampling to obtain the relative frequency
of true groundings and compute the counts using the total number of groundings,
which is known. Nevertheless we would still have to perform inference over the
model to calculate P (X = x′), which is itself also #P-complete.

4.4.4.2 Pseudo-Log-Likelihood

One way to address this problem is to approximate the log-likelihood by using the
pseudo-likelihood:

P ∗(X = x) =
N∏
k=1

P (Xk = xk | MBx(Xk)) (4.17)

where Xk ∈ X is a ground atom, xk is Xk’s truth value in the world x, and MBx(Xk)
is the Markov blanket of Xk in x. The pseudo-likelihood P ∗(X = x) is therefore the
product of the conditional likelihoods of all variables, each given the values of its
direct neighbors in the network.

As before, we maximize the pseudo-log-likelihood instead, which is given by Equa-
tion 4.18. ni,k(x) denotes the number of true groundings of the formula Fi in a
modified world x where the truth value of the k-th ground atom, Xk, has been
inverted. FXk

denotes the set of indices of formulas that contain Xk.

LPLL(X = x) = log
N∏
k=1

P (Xk = xk | MBx(Xk))

=
N∑
k=1

log

 exp
(∑

i∈FXk
wini(x)

)
exp
(∑

i∈FXk
wini(x)

)
+ exp

(∑
i∈FXk

wini,k(x)
)

=
N∑
k=1

log

1 + exp

∑
i∈FXk

wini,k(x)−
∑
i∈FXk

wini(x)

−1

=
N∑
k=1

− log

1 + exp

∑
i∈FXk

wi(ni,k(x)− ni(x))

 (4.18)

26

4. Probabilistic Modeling Methods

We can again optimize this by using L-BFGS. Therefore we need the gradient which
is given by Equation 4.19

δ

δwi
LPLL(X = x) =

N∑
k=1

[ni(x)− P (Xk = xk | MBx(Xk)) · ni(x)

−P (Xk = ¬xk | MBx(Xk)) · ni,k(x)] (4.19)

δ
δwi
LPLL(X = x) is therefore the difference between the number of the true ground-

ings for Fi in the training data and the expected number.

From Equation 4.18 we know that

P (Xk = xk | MBx(Xk)) =

1 + exp

∑
i∈FXk

wi(ni,k(x)− ni(x))

−1

With pk =def P (Xk = xk | MBx(Xk)) we can rewrite Equation 4.19 as follows:

δ

δwi
logP ∗(X = x)

=
N∑
k=1

[ni(x)− pk · ni(x)− (1− pk) · ni,k(x)]

=
N∑
k=1

(ni,k(x)− ni(x)) · (pk − 1)

=
N∑
k=1

(ni,k(x)− ni(x)) ·

 1

1 + exp
(∑

j∈FXk
wj · (nj,k(x)− nj(x))

) − 1

(4.20)

For the computation of the gradient it is therefore sufficient to compute the counts
of true groundings nj(x) and nj,k(x) for each formula in the training data, with the
truth value of the k-th ground atom being maintained and being flipped, respec-
tively. For each formula Fi we therefore only need to consider predicates that appear
in the formula. Additionally, formulas whose truth value do not change by flipping
the truth value of a single ground atom can be ignored as their counts cancel out
when taking the difference. As all of the counts do not change during optimization,
the counts and their differences only need to be computed once.

As the computation of LPLL and δ
δwi
LPLL, Equation 4.18 and Equation 4.19 respec-

tively, does not require inference over the model, maximization can be done very
efficiently using standard optimization algorithms like L-BFGS.

27

4. Probabilistic Modeling Methods

The drawback of using the pseudo-log-likelihood is that it is a rough approximation
that is not guaranteed to be close to the real likelihood values, especially for complex
networks. In practice it can give poor results, e.g. when long chains of inference are
required at query time [25].

PLL is also often subject to overfitting and thereby learning too large (hard) weights.
A standard method to avoid this is to add a Gaussian prior with zero mean to the
weights, though it can be problematic to find a reasonable problem-specific value
for the standard deviation of the Gaussian.

4.4.4.3 Computation of Formula Frequencies

In some cases we want to model the marginal distribution over ground formulas,
usually ground atoms, and to extract it directly from the evidence given in the
training database. Each marginal distribution is defined over a set of formulas SF .
It either contains two formulas, Fi and its negation ¬Fi or several mutually exclusive
formulas. That means for each vector of constants used for grounding these formulas,
there is exactly one grounded formula which is true in the evidence.

We can then use the relative frequencies of the true groundings of the formulas in
the training data to directly calculate their weights. It is necessary to include all
of the mutually exclusive formulas in the MLN to assign weights to them. For each
formula Fi ∈ SF , the weight can be calculated as wi = log(ni

c
), with ni being the

number of true groundings of Fi and c being the total number of groundings for all
formulas in SF .

This guarantees that the weights for the formulas Fi ∈ SF represent their marginal
distribution. The weights for all other formulas, which have an intersecting set of
variables with the variables used in the formulas Fi, will be learned accordingly.
This method is also more efficient as the precalculated weights for the formulas in
SF are fixed and can therefore be excluded from the optimization.

In the simple boolean case, we would just have two formulas, F1 and F2 = ¬F1. We
then get w1 = log(n1

c
) and w2 = log(n2

c
) = log(1− n1

c
) with c = n1 + n2.

4.4.5 Parameter Learning with Soft Evidence

In this section we present the new methods we developed for learning MLNs with
training data that contains soft evidence. These methods can be seen as extensions

28

4. Probabilistic Modeling Methods

or generalizations of the hard evidence learning methods presented in the previous
section. In Section 4.4.6, we give an overview and a feature comparison over the
new methods, and in Section 4.4.7, we discuss their applicability considering a small
exemplary Markov Logic Network.

For parameter learning we make the closed world assumption and therefore assume
to have evidence specifying the truth value for each ground atom. Hard evidence
e, for a given model and set of constants C, thus describes a single world x with
P (X = x) = 1. Soft evidence instead defines a probability distribution P (X =
x | e) over possible worlds x ∈ X . Hard evidence can be seen as a border case of
soft evidence with ∀Xi ∈ X : P (Xi = true | e) ∈ {0, 1}.

4.4.5.1 Log-Likelihood with Weighting of Formulas (LL-ISE)

A first idea is to maximize the log-likelihood (LL) of the worlds that correspond to
the soft evidence, similar to the log-likelihood learning for hard evidence, presented
in Section 4.4.4.1. A problem is that the soft evidence does not define a single world
but a distribution over possible worlds. To be able to use a single world instead of the
distribution, we work with a “soft world” in which each formula is true to a certain
degree that corresponds to the probability of the given soft evidence. We therefore
assign to each formula Fi its degree of belief that corresponds to the probability
that a world in the evidence satisfies Fi.

This simplification serves us as an approximation of the distribution over worlds. To
be able to compute this soft weight for each formula, we assume the independence
of the pieces of the soft evidence (ISE assumption). We also assume that all soft
evidence values are given for ground atoms.

We calculate the probability of the evidence world as

PLL-ISE(X = x) =
exp (

∑
iwiñi(x))∑

x′∈X exp (
∑

k wknk(x
′))

=
1

Z
exp

(∑
i

wiñi(x)

)
(4.21)

with ñi(x) =
∑

j f̃j(x) being the soft count for the formula Fi with the groundings
F̂j. It is similar to the number of true groundings in the hard evidence case. The
only difference is that the feature f̃j(x) is real-valued instead of discrete, that is:
f̃j : X → [0; 1]. We calculate a value for f̃j(x) as the probability that the grounded
formula F̂j is satisfied in x. Let e be the evidence, our training data. Making the
independent soft evidence (ISE) assumption, we can then compute f̃j(x) = P (F̂j | e)
as follows:

29

4. Probabilistic Modeling Methods

1. Convert F̂j into conjunctive normal form (CNF), let the disjunctions be Dj,k:
F̂j =

∧
kDj,k

2. Assume independence of disjunctions:
P (F̂j | e) = P (

∧
kDj,k) =

∏
k P (Dj,k)

3. Calculate probabilities for the disjunctions of the ground literals Lj,k,l under
the assumption of the independence of the soft evidence variables (ISE):
Dj,k =

∨
l Lj,k,l = 1− P (

∧
l ¬Lj,k,l) = 1−

∏
l(1− P (Lj,k,l))

4. Put it all together: f̃j(x) =
∏

k (1−
∏

l(1− P (Lj,k,l)))

5. ∀j, k, l: either P (Lj,k,l) or P (¬Lj,k,l) = 1−P (Lj,k,l) is given in the evidence e,
as all soft evidence is given for ground atoms and we are making the closed
world assumption for MLN learning.

As a small example, consider the formulas f1 = a(object) ∧ b(object) and
f2 = a(object) ∨ b(object). If we assume the given soft evidence P (a(O1)) = 0.7
and P (b(O1)) = 0.4 then the values ñi(x) for a world x in which both a(O1) and
b(O1) are true will be calculated as follows:

• ñ1(x) = P (a(O1)) · P (b(O1)) = 0.7 · 0.4 = 0.28

• ñ2(x) = 1− ((1− P (a(O1))) · (1− P (b(O1)))) = 1− (0.3 · 0.6) = 0.82

The values for all four possible worlds are:

a, b a,¬b ¬a, b ¬a,¬b
n1(x) 0.28 0.42 0.12 0.18
n2(x) 0.82 0.88 0.58 0.72

In case E contains only hard evidence, Lj,k,l is either 1 (true) or 0 (false). Therefore
f̃j(x) is 1 if F̂i is satisfied in x and 0 if it is not satisfied. This is exactly the same
definition as f̂j(x) : X → {0, 1} for hard evidence log-likelihood (LL) learning. It
follows that in this case ñi(x) = ni(x) and therefore PLL-ISE(X = x) = P (X = x).
LL-ISE is therefore an extension to normal log-likelihood learning (Section 4.4.4.1),
as it behaves the same in the border case of hard evidence.

For weight learning, we again maximize the log-likelihood

LLL-ISE(X = x) =
∑
i

wiñi(x)− log(Z) (4.22)

30

4. Probabilistic Modeling Methods

The gradient

δ

δwi
LLL-ISE(X = x) = ñi(x)−

∑
x′∈X

ni(x
′) · P (X = x′)

= ñi(x)−
∑
x′∈X

ni(x
′) · exp (

∑
k wknk(x

′))∑
x′′∈X exp (

∑
k wknk(x

′′))
(4.23)

Using the gradient, given by Equation 4.23, LLL-ISE can be maximized conveniently
with a standard optimization algorithm like L-BFGS.

As the computation of Z is the same as for LL, it also requires to sum over all
possible worlds. As the number of possible worlds is |X | = 2|X|, with |X| being the
set of ground atoms, it is computationally intractable except for the smallest MLNs
and domains.

4.4.5.2 Pseudo-Log-Likelihood with Weighting of Formulas (PLL-ISE)

We define the pseudo-log-likelihood LPLL-ISE(X = x) for soft evidence as an ex-
tension to the pseudo-log-likelihood for hard evidence, see Section 4.4.4.2. As in
LL-ISE (Section 4.4.5.1), PLL-ISE uses the soft counts ñi(x) to approximate the
counts of satisfied ground formulas in the distribution of worlds given by the soft
evidence. Accordingly, it uses ñi,k(x) as the soft count for a grounded formula in
which the k-th ground atom Xk has been inverted. In the computation of f̃ i(x) for
ñi,k(x), the inverted ground atom receives a probability P (¬Xk) = 1−P (Xk), with
P (Xk) being the soft evidence value for the ground atom Xk. All soft evidence is
given at the level of ground atoms as we also make the independent soft evidence
(ISE) assumption for PLL-ISE. This yields Equation 4.24 and Equation 4.25 for the
pseudo-log-likelihood and its gradient respectively.

LPLL-ISE(X = x) =
N∑
k=1

− log

1 + exp

∑
i∈FXk

wi · (ñi,k(x)− ñi(x))

 (4.24)

δ

δwi
LPLL-ISE(X = x)

=
N∑
k=1

(
ñi,k(x)− ñi(x)

)
·

 1

1 + exp
(∑

j∈FXk
wj · (ñj,k(x)− ñj(x))

) − 1

(4.25)

31

4. Probabilistic Modeling Methods

As the pseudo-log-likelihood is a rough approximation, its computation is very fast
compared to the other methods, but it often gives poor results in non-trivial sce-
narios, similar to the hard evidence PLL (Section 4.4.4.2). In combination with
precalculated weights (see Section 4.4.4.3), we experienced it failing completely by
optimizing toward zero weights.

4.4.5.3 Log-Likelihood with Sampling and Weighting of Formulas
(SLL-ISE)

As the computational problem with LL-ISE is the calculation of the normaliza-
tion constant Z, we propose to use a sampling based approach to calculate an
approximation Z̃ for it. With Su being a multiset of uniformly sampled worlds, the
log-likelihood can be approximated as

LSLL-ISE(X = x) =
∑
i

wiñi(x)− log(Z̃)

=
∑
i

wiñi(x)− log

(
C ·

∑
s∈Su

exp

(∑
k

wknk(s)

))
(4.26)

with C = |X |
|Su| . If we draw the same number of samples |S| in each step, C does not

matter for the optimization and can be left out.

But there is a problem with sampling the worlds in Su uniformly. Given a large
number of ground atoms and non-zero weights w, it is not practicable, because
usually only few worlds have a significant high probability whereas the probability
of the other worlds is close to zero. If we apply uniform sampling, the number of
samples would have to be extremely high to get, with a high enough probability, a
sufficient number of samples where P (X = s) ∝ exp (

∑
k wknk(s)) � 0. Otherwise,

if Z̃ in Equation 4.26 is approximately zero, the optimization would fail.

Instead we run MC-SAT (Section 4.4.3.2) to sample from the prior using the current
weights w, but not the training evidence e. We take the worlds from the Markov
chain generated by MC-SAT as samples and denote the multiset of sampled worlds
as S. The problem with that approach is that by running MC-SAT, the worlds in
S are sampled with the probability P (X = s). It is therefore possible that multiple
samples si contribute to the normalization Z for the same world x. Assume that
we would group the worlds in S into disjoint subsets Sx of similar samples for each
world x and that we draw a sufficient number of samples. Then with |Sx| being the
number of samples that represent world x:

∀x ∈ X :
|Sx|
|S|
≈ P (X = x) ∝ exp

(∑
k

wknk(xk)

)
(4.27)

32

4. Probabilistic Modeling Methods

This means that with m · P (X = x) being approximately a multiple of the relative
frequency with which we sample x:∑

s∈S

exp

(∑
k

wknk(s)

)
≈

∑
x∈X

exp

(∑
k

wknk(x)

)
·m · P (X = x)

∝
∑
x∈X

(
exp

(∑
k

wknk(x)

))2

(4.28)

which is not proportional to Z̃.

We therefore propose to remove duplicates from the set of samples S, which we
denote S̄. In the border case of a high enough (or infinite) number of samples and
∀x ∈ X : P (X = x) > 0, it contains a sample for each world, which means S̄ = X .
This would give us the same computation as LL-ISE. In the usual case, where we
have a limited number of samples � |X |, it can still be used for a good approx-
imation of Z, as we use the samples to sum up values that are proportional to
P (X = s). With a high probability we will therefore add samples to S̄ which have
a large contribution to Z̃ and leave out samples that would have a low contribu-
tion to it. We therefore need a much smaller number of samples to get a useful
approximation as if we would use uniform sampling. With

Z̃ ≈ C̄ ·
∑
s∈S̄

exp

(∑
k

wknk(s)

)
(4.29)

and C̄ = |X |
|S̄| we can rewrite Equation 4.26 as

LSLL-ISE(X = x) ≈
∑
i

wiñi(x)− log

(
C̄ ·
∑
s∈S̄

exp

(∑
k

wknk(s)

))
(4.30)

A further aspect to consider is whether we should add the summand of our soft
evidence world

∑
iwiñi(x) to the normalization Z̃. On the one hand it would ensure

to keep the approximated log-likelihood below 0, which is a nice property if we try to
interpret the likelihood, but not necessary for the optimization. On the other hand,
we thereby add a mixture of worlds to the normalization that might already be
(partially) given in the samples. Contrary to first intuition, mathematically it does
not matter. All we want to do is to find the arg maxw of the function exp(

∑
i wiñi(x))

Z̃
.

With a(w) being the term corresponding to our evidence world and b(w) being the
term corresponding to all other worlds, we can write it as a(w)

a(w)+b(w)
or a(w)

b(w)
in case

we add the evidence world to Z̃ and in case we do not, respectively. As these terms
are always positive, with

arg max
w

1

f(w)
= arg min

w
f(w) ∀ f(w) > 0 (4.31)

33

4. Probabilistic Modeling Methods

we can see that

arg max
w

a(w)

a(w) + b(w)
= arg max

w

1

1 + b(w)
a(w)

=

arg min
w

1 +
b(w)

a(w)
= arg max

w

a(w)

b(w)
∀ a(w), b(w) > 0 (4.32)

and it mathematically therefore does not matter which variant we use. But in our
application, if we use floating point values with limited precision, it can be nu-
merically more stable in some cases to leave the evidence world out. Otherwise,
when we calculate: log(a(w)) − log(a(w) + b(w)) and a(w) � b(w), we might get
a(w) + b(w) = a(w) due to precision loss. This would make the whole expression
that is to be maximized equal to log(a(w))− log(a(w)) = 0.

The gradient of SLL-ISE is

δ

δwi
LSLL-ISE(X = x) = ñi(x)−

∑
s∈Su

(
ni(s) ·

exp (
∑

k wknk(s))

Z̃

)
≈ ñi(x)−

∑
s∈S

(
ni(s)

|S|

)
(4.33)

We can make this approximation because the probability of the samples s ∈ S,

when sampling with MC-SAT, is already P (X = s) ≈ exp(
∑

k wknk(s))
Z̃

.

Similar to LLL-ISE, LSLL-ISE can be maximized using L-BFGS. As we also use the
soft counts ñi, we still have to make the assumption of independent soft evidence.
Using MC-SAT to sample expected values for ni is similar to the Contrastive Di-
vergence method presented in [25] for hard evidence learning.

4.4.5.4 Log-Likelihood with Double Sampling and Weighting of Worlds
(DSLL-WW)

In all methods we have presented so far, we approximate the distribution of worlds
given by the soft evidence as a single soft world by assigning a degree of belief to
each formula. With DSLL-WW, however, we do not make this simplification, but
draw samples from the distribution of worlds defined by the training data. The
evidence is therefore not seen as a single soft world anymore but as a weighted sum
of worlds. This yields the advantage that we do not have to make the assumption of
independent soft independence. DSLL-WW builds upon the method SLL-ISE and
uses sampling both for the evidence and the normalization term.

34

4. Probabilistic Modeling Methods

With this method, we do not maximize the probability of a single world P (X = x)
anymore, but the weighted average of probabilities of worlds sampled from the distri-
bution of worlds that is defined by the soft evidence. This is given in Equation 4.34,
with Se being the set of worlds sampled to approximate the distribution given by
the training data. This sampling is done using MC-SAT under consideration of the
given soft evidence e. Therefore the worlds in Se are sampled with the probability
P̃ (X = s | e) which approximates P (X = s | e).∑

x∈X

P (X = x | e) · P (X = x) ≈
∑
x∈X

P̃ (X = x | e) · P̃ (X = x)

=
1

|Se|
·
∑
s∈Se

P̃ (X = s)

=
1

|Se|
·
∑
s∈Se

exp (
∑

k wknk(s))

Z̃
(4.34)

We again use the logarithm of this value:

LDSLL-WW (e) = log

(
1

|Se|
·
∑
s∈Se

exp

(∑
k

wknk(s)

))
− log(Z̃)

= log

(
1

|Se|
·
∑
s∈Se

exp

(∑
k

wknk(s)

))
− log

(
C̄ ·
∑
s∈S̄

exp

(∑
k

wknk(s)

))
(4.35)

The normalization Z̃ is calculated similar to SLL-ISE, S̄ is sampled without evidence
and does not contain duplicate worlds, as described in Section 4.4.5.3.

The gradient, given in Equation 4.36, is the difference between the average count
of true groundings of a formula Fi in the sampled worlds given by the evidence and
in the worlds sampled without considering the evidence.

δ

δwi
LDSLL-WW (e) =

∑
s∈Se

(
ni(s)

|Se|

)
−
∑
s∈S̄

(
ni(s)

|S̄|

)
(4.36)

4.4.5.5 Further Approaches

Another idea for a learning algorithm, derived from LL-ISE, is to not use the soft
counts but to compute a value for the mixture of all possible worlds according to
the given soft evidence. We weigh each world x by its probability λx. It is computed
by multiplying the soft evidence values for each ground atom Xi as we treat them

35

4. Probabilistic Modeling Methods

again as being independent probabilities. Given the evidence e, we can compute it
as

PLL-ISEWW (e) =

∑
x∈X (exp (

∑
iwini(x)) · λx)∑

x∈X exp (
∑

k wknk(x))
(4.37)

with
λx =

∏
Xi

P (Xi | e) (4.38)

The problem with this idea is that it will lead to an optimization of the weights
such that they are maximizing the single world with the maximum λx (assuming
no other worlds have the same maximum λx). This can be seen by transforming
Equation 4.37:

PLL-ISEWW (e) =

∑
x∈X (exp (

∑
iwini(x)) · λx)
Z

·
1
Z
1
Z

=
∑
x∈X

P (X = x) · λx (4.39)

We just maximize the sum of the products of the probability of the soft evidence
times the probability given the current weights for each world. With x∗ being the
most probable world according to the evidence, i.e. ∀ xi : λxi ≤ λx∗ , maximizing
Equation 4.39 leads to weights such that P (X = x∗) is close to 1 because

1 · λx∗ ≥ P (X = x∗) · λx∗ +
∑

x∈X\{x∗}

P (X = x) · λx (4.40)

with
∑

x∈X λx = 1. This means that giving a probability > 0 to any other world
than x∗ would reduce the sum which is to be maximized.

Although that approach does not work, it might still be a reasonable idea to use
the world probability λx during optimization. We therefore propose to minimize the
deviation of the world probabilities P (X = x) given by the weights from the world
probabilities λx given by the soft evidence. This error measure can be formulated
as ∑

x∈X

|P (X = x)− λx| (4.41)

Preliminary tests in small MLNs showed reasonable results using only hard or only
soft evidence, but failed in the mixed case. We see the minimization of an error
measure instead of the maximization of the likelihood of a world or a mixture of
worlds as an interesting topic for further research.

36

4. Probabilistic Modeling Methods

4.4.6 Comparison

We now want to give a comparison between the methods we presented in the pre-
vious section. The following feature matrix highlights the key differences of the
different algorithms.

LL-ISE PLL-ISE SLL-ISE DSLL-WW
Assume independent soft evidence X X X
Assume soft evidence world X X X
Approximative X X X
Sampling-based X X
Runtime – ++ +
Applicable for complex models (X) (X)

LL-ISE is nice in theory and useful as a baseline for testing new methods, but in
practice it is usually intractable to explicitly compute values for all possible worlds.
PLL-ISE is computationally very efficient through simplification of the problem, but
therefore fails in many relevant applications, as pseudo-log-likelihood does for hard
evidence. SLL-ISE gives a good approximation of LL-ISE while still being tractable
for larger models. It allows to make the trade-off between precision and the number
of samples which is proportional to the computation time. We believe it therefore
to be the best choice for many applications. DSLL-WW is the only method with
which we do not assume a single evidence world defined through soft counts but
consider the real distribution of worlds. This allows us to drop the assumption of
independent soft evidence that is necessary for all the other methods. It requires
more time than SLL-ISE as it uses two different sampling based approximations,
but if we want to consider possible dependencies between pieces of soft evidence,
then it is our only choice here.

4.4.7 Example and Discussion

We will illustrate some of the differences of the presented methods in the following
small example and discuss the results. The example MLN and evidence databases
are written in the syntax used by the Progcog MLN tools [4] which extend the
syntax used by the Alchemy framework [26]. Our example MLN is given by the
following:

// p r ed i c a t e d e c l a r a t i o n s :
a (ob j e c t)
b(ob j e c t)

37

4. Probabilistic Modeling Methods

// formulas :
#fixWeightFreq
0 a (x)
#fixWeightFreq
0 ! a (x)

0 a (x) ^ b(x)
0 a (x) ^ ! b(x)
0 ! a (x) ^ b(x)
0 ! a (x) ^ ! b(x)

The first section defines all used predicates, the second section our formulas. “ !a(x)”
is simply the notation for “not a(x)”. The weights for the formulas marked with
“#fixWeightFreq” are precalculated according to their relative frequencies in the
training database, as explained in Section 4.4.4.3. The zeros in front of the formulas
are the initial weights for the optimization process which we set as a default to 0.

We precalculate and fix the weights for a(x). The other four formulas in our MLN,
representing all possible conjunctions between a, b,¬a,¬b, are used to learn the
conditional probability P (b | a).

First we will train the MLN with hard evidence, second with soft evidence and
thereby discuss the results. As hard evidence training data, we use the following
small database using the domain (set of constants) C = {O1, O2, O3}.
a (O1)
a (O2)
! a (O3)

b(O1)
b(O2)
! b(O3)

In all of our training databases, we make the closed world assumption. That means
that all unspecified ground atoms are assumed to have a truth value of false for
training. After learning our model with log-likelihood (LL, Section 4.4.4.1), we get
the following weights:
−0.405465 a (x)
−1.098612 ! a (x)
6 .434239 a (x) ^ b(x)
−7.087464 a (x) ^ ! b(x)
−5.781015 ! a (x) ^ b(x)
6 .434239 ! a (x) ^ ! b(x)

38

4. Probabilistic Modeling Methods

With our testing domain C = {O}, querying for “a(O)∧b(O)” gives us a probability
of 0.6667. This is exactly what we would expect, as P (a ∧ b) = P (b | a) · P (a) =
1 · 2

3
≈ 0.6667. The MLN learns the conditional probability P (b|a) = 1 because in

the training data, b(x) is always true if and only if a(x) is also true.

Pseudo-log-likelihood (PLL, Section 4.4.4.2) learning fails in this example. If we
precalculate the weights for a(x), PLL just learns zero weights for the other formulas.
If we refrain from doing so, the weights are

−1.775603 a (x)
1 .775603 ! a (x)
7 .884686 a (x) ^ b(x)
−9.660289 a (x) ^ ! b(x)
−7.926497 ! a (x) ^ b(x)
9 .702100 ! a (x) ^ ! b(x)

which give incorrect results. Especially the weight for !a(x) is too large. Querying
for “a(O) ∧ b(O)” gives a probability of 0.004639 which is not correct. We might
be able to learn better weights by adding a Gaussian prior to the weights in order
to prefer smaller values, but this would require additional problem-specific hand
tuning.

Now we want to consider a training database containing soft evidence. Each line
has the format “P (Fi | e) Fi”:

0 .6667 a (O1)
0 .6667 b(O1)

It is important to note that although again a(x) is true in 2
3
of the possible worlds

and b(x) is true in 2
3
of the possible worlds, this data gives a fundamentally different

model than the previous hard training database. It defines no dependencies between
a(x) and b(x) whatsoever, that means, it does not say anything about whether a(x)
is true in the same worlds in which b(x) is true or not.

Using SLL-ISE (Section 4.4.5.3), we learn the following weights:

−0.405415 a (x)
−1.098712 ! a (x)
0 .346669 a (x) ^ b(x)
−0.346588 a (x) ^ ! b(x)
0 .346609 ! a (x) ^ b(x)
−0.346690 ! a (x) ^ ! b(x)

39

4. Probabilistic Modeling Methods

Inference gives us P (a(O) ∧ b(O)) = 0.4445. This is P (a ∧ b) = P (a) · P (b) =
0.6667 · 0.6667 ≈ 0.4445, which is correct because we assume that the pieces of
evidence given for a(x) and b(x) are independent of each other.

The approximative sampling-based methods SLL and DSLL (Section 4.4.5.3 and
4.4.5.4) lead to weights that give P (a(O)∧ b(O)) a value of 0.450800 and 0.475435,
respectively. We used 1000 samples for S and Se in each iteration1. These prob-
abilities are approximately correct and vary slightly among different runs as the
sampling done by MC-SAT is a randomized method.

If we want to get the same model as for hard evidence, we have to specify the
dependency between a(x) and b(x) explicitly, for example as a soft evidence for
P (a ∧ b) = 0.6667. Our learning algorithm that can handle this is DSLL-WW.
Using 10000 samples for both sample sets in each iteration, we then get for our
query “a(O) ∧ b(O)” a probability of 0.668525 which is approximately the same as
in the hard evidence case.

One general problem with these sampling based methods is that we have to guess a
sufficient number of samples for each problem and the desired precision. A too large
number does not hurt, but the learning may take a very long time (the runtime scales
linearly with the number of samples, not taking effects on L-BFGS convergence
into account). An insufficient number on the other hand leads to imprecision or in
the worst case to completely wrong results as the optimization fails. For sampling
s ∈ Se from the soft evidence distribution of worlds, one option would be to stop
sampling when the deviation of the soft evidence values from relative frequency in
the sampled Markov chain falls below some threshold. For the sampling of s ∈ S for
normalization, we might stop when the change of Z̃ throughout a certain number
of samples falls below some threshold. We see defining these thresholds and finding
reasonable values for them as a topic for future research.

1In this example, it would be sufficient to use a smaller number of samples for S as there are only
four different possible worlds and duplicates get removed. That means, we could stop sampling
once these four worlds are found. This is not possible in more complex examples with a higher
number of ground atoms |G|, as 2|G| possible worlds exist.

40

5 Learning Organizational Principles

Having identified the important principles in Section 2, we want to learn a model
that allows us to solve the classification task of choosing the best location to place a
previously unseen object in the kitchen. We additionally want to gain insights into
the relevant organizational principles at each location in a kitchen by analyzing
feature importance.

5.1 Features

As outlined above, we believe that organizational principles are governed by the
notion of similarity. Similarity, however, can be defined in manifold ways: We could
consider the similarity along any dimension, including the size, shape, weight,
colour, value, fitness for a particular purpose, etc. of the object as features that
would allow to identify the organizational principles that are characteristic for a
specific location. Of course, we can also consider aggregates of the aforementioned
similarities that consider an arbitrary number of dimensions at the same time.

In our experiments, we consider the following features, all of which correspond to
principles identified in Section 2:

• WUP similarity: a semantic degree of similarity between concepts in an ontol-
ogy (where concepts in the ontology correspond to types of objects); it gives
an indication of how similar the types of objects are.

• Purpose: what the object can be used for, as defined through super-concepts
in our ontology to which the type of the object belongs (four binary features
indicating whether the object is a FoodVessel, PhysicalDevice, FoodOrDrink
or FoodIngredient)

• MealRelevance: five binary features indicating whether the type of object is
typically used for Breakfast, PrincipalMeal, Coffeebreak, Snack or Sandwich

5. Learning Organizational Principles

• Size: discretized size of the object according to its largest dimension, size ∈
{s, m, l}

• Shape: discrete values for the shape of the object, shape ∈
{box, cylindric, flat, bag, other}

TheWUP similarity is one particularly versatile similarity measure. It was originally
defined by Wu and Palmer in [27] in the context of automatic translations. For two
concepts in an ontology, it defines a similarity value in the interval [0; 1], taking the
depth of the concepts and the depth of their lowest common super-concept (LCS)
into account:

wupSim(C1, C2) =
depth(LCS(C1, C2))

1
2 (depth(C1) + depth(C2))

(5.1)

The reflexive case is defined as wupSim(C,C) = 1. The computation is illus-
trated in Figure 5.1, showing a simplified version of our kitchen ontology with
wupSim(CoffeeCup, SodaGlass) = 0.5.

SpatialThing

DrinkingVessel

Cup

Thing

Glass

CoffeeCup SodaGlass

Root

LCS

C1 C2

 depth(LCS)
 = 2

 depth(C1)
 = 4

 depth(C2)
= 4

Figure 5.1: Example for path lengths used to calculate the WUP-Similarity

42

5. Learning Organizational Principles

The WUP similarity’s versatility is due to the flexible ways in which we can define
concepts in our ontology. Concepts can have multiple super-concepts, creating dif-
ferent subtrees in the ontology that correspond to distinct aspects of a particular
type of object. For example, a refrigerator can be seen as an electrical household
appliance, a cooling device, or just as a box-shaped container. Depending on the
situation at hand, each of these views may be more or less relevant. These differ-
ent sub-trees in the ontology lead to multiple connections between two concepts,
each having possibly different lengths that correspond to the semantic distance in
that particular respect. The WUP similarity typically computes the minimum of all
these distances because it considers the lowest common super-concept (LCS).

The layout of the ontology thus influences the computed similarity values. Note that
the ontologies we used were not specifically designed for computing the similarities.
We rather extended an existing ontology with classes that were automatically de-
rived from an online shop’s website. Since the distances computed from this ontology
appear to be meaningful to humans, it seems to be close to a “natural ontology” of
household objects.

We visualize WUP similarities in Figure 5.2, where we show an excerpt of a graph
containing a small subset of the concepts from one of our real kitchen datasets. We
defined a distance measure Mij := 1 − wupSim(Ci, Cj), calculating the distances
between all pairs of concept and using multidimensional scaling to visualize the
distance matrix M in two dimensions. Concepts located close together in the graph
have high pairwise similarity (low distance). Each shape/color indicates a different
location where objects of the corresponding concepts are stored in one of our real-
world datasets. We observe that most concepts found at the same location are
located in clusters separate from the others, which indicates high discriminative
power of the WUP similarity for our classification task.

We refer to the group of products located at one place as a location. Based on
the WUP similarities between pairs of objects, we define two similarity measures
between a single object O and a location L as follows:

maxWup(O,L) = max
O′∈L

wupSim(class(O), class(O′)) (5.2)

avgWup(O,L) =
∑
O′∈L

wupSim(class(O), class(O′))
|L|

(5.3)

43

5. Learning Organizational Principles

Figure 5.2: Visualization of pairwise distances between concepts, based on the WUP
similarity. Each shape/color indicates a location in the kitchen.

5.2 Classifiers

We now describe the classifiers we tested for the task of allocating an object to its
most appropriate storage location. For our classifiers, we use one avgWup and one
maxWup feature for each location, unless noted otherwise.

5.2.1 Maximum WUP Similarity

The first set of primitive classifiers return the location with the maximum WUP
similartiy between the object and the location. We define two classifiers, one using
the maximum avgWup, the other using the maximum maxWup similarity. The latter

44

5. Learning Organizational Principles

is equivalent to returning the location that contains the most similar object with
respect to WUP similarity.

5.2.2 Decision Trees

We applied unpruned C4.5 decision trees with the discrete and continuous features
described in section 5.1. We use the implementation from the Weka machine learning
suite [28] called J48.

5.2.3 Boosted Decision Trees

We applied AdaBoost (Weka implementation called AdaBoostM1) with pruned C4.5
decision trees (J48), using the Weka default parameters.

5.2.4 Support Vector Machines (SVM)

We used the Weka SVM implementation called SMO with polynomial kernels and
the default parameters (C = 1).

5.2.5 Naive Bayes

In a naive Bayesian classifier, the WUP similarities, as continuous features, can be
treated in various ways, as discussed in Section 4.3. We therefore compare three
variants in our tests:

• NB discrete: We use k-means clustering to discretize each of the continuous
features with k = 5. Figure 5.3 shows the network structure and some exem-
plary (conditional) probability tables of one instance of the resulting classifier.

• NB continuous: We approximate the distribution of each continuous feature
with a Gaussian, increasing the variance by 0.05 to avoid overfitting.

• NB soft: We treat the degree of similarity as a degree of belief, using a boolean
variable for each continuous feature and applying soft evidential updates to
compute posterior probabilities, as described in Section 4.3.3. As we did not

45

5. Learning Organizational Principles

yet implement the described soft evidence inference algorithm for our naive
Bayes classifier, we exported the trained classifier as a Markov Logic Network
with the same semantics (see [21] for details on the conversion of Bayesian
Networks into MLNs) and performed exact inference with soft evidence (see
Section 4.4.3.3) in the MLN.

Figure 5.3: Graphical representation of a discrete naive Bayes model for our mockup
kitchen data set with three exemplary (conditional) probability tables

When interpreting similarity values as degrees of belief, we intuitively want to have
the minimum similarity correspond to “not similar”, the maximum similarity to
“similar” and values in between to “similar to some degree”. Most WUP similarities
in our dataset are approximately between 0.4 and 0.8, therefore normalization is
desirable. We normalize the WUP similarity features for the soft and continuous
naive Bayesian classifiers to the [0; 1] interval by applying a linear scaling on the
values occurring in the training data. Values in the test data are scaled in the same
way and clipped to the [0; 1] interval in case they exceed its limits.

5.2.6 Markov Logic Networks

In the following sections, we present, in order of increasing complexity, several mod-
els based on Markov Logic Networks (see Section 4.4). They all use soft evidence
during parameter learning and inference to handle our continuous WUP similar-
ity features, analogous to the soft naive Bayes classifier presented in the previous

46

5. Learning Organizational Principles

section. In Section 5.2.6.5 we discuss the challenges we faced when trying to apply
these models in practice.

For brevity, we include only one wupSimilarity predicate that represents our
maxWup (or avgWup) feature. Further features, assuming their independence, can
easily be added by including predicates and formulas similar to the ones containing
wupSimilarity.

5.2.6.1 MLN Using Similarity to One Location

Our first MLN has two predicates, atLocation(O, L) stating that the object O is
located at the location L and wupSimilarity(O, L) stating that O is similar to the
objects at L. For weight learning, we use hard evidence for the locations of the
known objects and state the continuous (normalized) WUP similarities by giving
soft evidence for the wupSimilarity(O, L) predicate.

Our simplest MLN just models the prior probabilities at each location L and the
conditional probabilities P (wupSimilarity(O, L) | atLocation(O,L)). We define it
as follows:

atLocat ion (object , l o c a t i o n !)
wupSimi lar i ty (object , l o c a t i o n)

#fixWeightFreq
0 atLocat ion (o , L1)
#fixWeightFreq
0 ! atLocat ion (o , L1)

0 atLocat ion (o , L1) ^ wupSimi lar i ty (o , L1)
0 atLocat ion (o , L1) ^ ! wupSimi lar i ty (o , L1)
0 ! atLocat ion (o , L1) ^ wupSimi lar i ty (o , L1)
0 ! atLocat ion (o , L1) ^ ! wupSimi lar i ty (o , L1)

[. . .]

#fixWeightFreq
0 atLocat ion (o , L6)
#fixWeightFreq
0 ! atLocat ion (o , L6)

0 atLocat ion (o , L6) ^ wupSimi lar i ty (o , L6)
0 atLocat ion (o , L6) ^ ! wupSimi lar i ty (o , L6)
0 ! atLocat ion (o , L6) ^ wupSimi lar i ty (o , L6)

47

5. Learning Organizational Principles

0 ! atLocat ion (o , L6) ^ ! wupSimi lar i ty (o , L6)

As this model does not include any formulas that can model a dependency between
a location Li and the WUP similarity to another location Lj with Li 6= Lj, it is
less powerful than the naive Bayes classifier model presented in Section 5.2.5, which
uses the WUP similarities to all locations as features.

5.2.6.2 MLN Using Similarity to All Locations

We now want to include formulas to model these dependen-
cies by including formulas expressing the conditional probabilities
P (wupSimilarity(O, Li) | atLocation(O, Lj)) for all pairs of i and j. In the
following MLN, this is denoted as +l and +l2, which are automatically expanded
for all values of the domain of location.

l o c a t i o n = {L1 , L2 , L3 , L4 , L5 , L6}

atLocat ion (object , l o c a t i o n !)
wupSimi lar i ty (object , l o c a t i o n)

0 atLocat ion (o , +l) ^ wupSimi lar i ty (o , +l 2)
0 atLocat ion (o , +l) ^ ! wupSimi lar i ty (o , +l 2)
0 ! atLocat ion (o , +l) ^ wupSimi lar i ty (o , +l 2)
0 ! atLocat ion (o , +l) ^ ! wupSimi lar i ty (o , +l 2)

#fixWeightFreq
0 atLocat ion (o , L1)
#fixWeightFreq
0 ! atLocat ion (o , L1)

[. . .]

#fixWeightFreq
0 atLocat ion (o , L6)
#fixWeightFreq
0 ! atLocat ion (o , L6)

This MLN would have the same expressive power as our soft naive Bayes classifier
in case we use the same set of features. Compared to the previous, less complex,
model, this implies a higher computational effort, as this MLN contains 4|L|2 +2|L|
formulas whereas the previous one contained only 6|L|.

48

5. Learning Organizational Principles

5.2.6.3 MLN Using Pairwise Similarities between Objects

Our next step is to use the power of MLNs to model dependencies that we cannot
capture with our other classifiers. Instead of modeling dependencies between objects
and locations using the maxWup and avgWup aggregations, we directly include
the pairwise WUP similarities between objects into our model, expressed in the
following MLN by the predicate wupSimilarity(o1, o2).

atLocat ion (object , l o c a t i o n !)
wupSimi lar i ty (object , ob j e c t)

#fixWeightFreq
0 atLocat ion (o , L1)
#fixWeightFreq
0 ! atLocat ion (o , L1)

0 wupSimi lar i ty (o1 , o2) ^ atLocat ion (o1 , L1) ^ atLocat ion (o2 , L1)
0 wupSimi lar i ty (o1 , o2) ^ atLocat ion (o1 , L1) ^ ! atLocat ion (o2 , L1)
0 wupSimi lar i ty (o1 , o2) ^ ! atLocat ion (o1 , L1) ^ atLocat ion (o2 , L1)
0 wupSimi lar i ty (o1 , o2) ^ ! atLocat ion (o1 , L1) ^ ! atLocat ion (o2 , L1)
0 ! wupSimi lar i ty (o1 , o2) ^ atLocat ion (o1 , L1) ^ atLocat ion (o2 , L1)
0 ! wupSimi lar i ty (o1 , o2) ^ atLocat ion (o1 , L1) ^ ! atLocat ion (o2 , L1)
0 ! wupSimi lar i ty (o1 , o2) ^ ! atLocat ion (o1 , L1) ^ atLocat ion (o2 , L1)
0 ! wupSimi lar i ty (o1 , o2) ^ ! atLocat ion (o1 , L1) ^ ! atLocat ion (o2 , L1)

[. . .]

5.2.6.4 Further Modeling Techniques

In contrast to the other classifiers that we discussed, MLNs give us also the expres-
sive power to explicitly model the locations and therefore to define properties and
relations of/between the locations themselves.

Reasonable extensions of our models would be to include the types of the loca-
tions (e.g. fridge, drawer, cupboard) as additional features. We can furthermore
include spatial relations between the locations using predicates like nextTo(l1, l2)
or nextTo(l1, Oven). This would allow us to exploit information about object place-
ment that is given implicitly by the spatial kitchen layout. The power of Markov
Logic Networks, as the most general model that we consider here, thereby allow us
to incorporate additional knowledge that goes beyond the scope of this work and
might help to further improve on our results. We leave this as a topic for future

49

5. Learning Organizational Principles

research as we did not perform an experimental evaluation of MLNs due to the
practical challenges described in the next section.

5.2.6.5 Challenges

Although Markov Logic Networks are very powerful and a sound theoretical model,
their practical application to non-trivial problems yields many challenges, especially
with respect to computational complexity.

• Learning:
Our main challenge with Markov Logic Networks is the computational ef-
fort necessary for parameter learning. We performed preliminary tests for
the MLNs of different complexities with our soft evidence learning algorithms
PLL-ISE, SLL-ISE and DSLL-WW (see Section 4.4.5). As expected, PLL-ISE
fails in all but the smallest examples to learn a model that gives reasonable
results for our classification task as the pseudo-log-likelihood computation
makes additional independence assumptions to simplify the problem. SLL-
ISE and DSLL-WW often give more reasonable results, but their runtime is
too long to perform a thorough evaluation. Learning MLNs for our simplest
model takes several hours to days on a modern desktop machine (Intel Core i7
processor), learning for the more complex models often does not converge in
any reasonable timeframe. Although we are able to make a tradeoff between
precision and learning time by changing the number of samples drawn in our
sampling based methods, we do not yet have knowledge to make a prediction
of a reasonable number of samples for a given problem.

We scale down the weight gradient if it exceeds a fixed threshold to keep the
weight values low in early optimization stages (start values are 0), because
large weights (approx. > 1) lead to very long MCSAT sampling times. As
topic for future research, further speedups might be achieved by using an
adaptive number of samples for the sample-based approaches SLL-ISE and
DSLL-WW. For the normalization constant Z̃, it could be based on the growth
rate of Z̃ during the sampling process, for the sampling of Se in DSLL-WW
on the error between the soft evidence and the relative frequencies in the
sampled Markov chain. Furthermore we could improve performance through
the parallelization of the MCSAT algorithm, that is used during sampling,
by running one Markov chain per thread, as all of them can be sampled
independently from each other. This would allow an almost linear scaling
with the number of threads, which could give huge speedups if used on large
clusters or GPUs.

50

5. Learning Organizational Principles

Although these methods might lead to significant speedups, it remains ques-
tionable if MLNs will be applicable to real-world problems like our kitchen
classification without new learning methods that reduce the computational
complexity while still giving reasonable results.

• Inference:
After learning weights for one of our more complex kitchen models, we expe-
rienced MCSAT getting stuck during inference for the atLocation predicate
(classification task). This happens because of extremely slow convergence of
the sampled distribution toward the real probabilities. For any reasonable
number of sampling steps, MCSAT will just return a distribution that assigns
a probability of 1 to a random location (whose predicate is set to true in the
state it gets stuck in). This can happen because we have several formulas with
positive weights that are conjunctions containing the atLocation predicate for
a specific location (e.g. in the MLN presented in Section 5.2.6.2). Assume that
during the execution of MCSAT, our Markov chain is in a state where some of
these conjunctions have the truth value true. To switch the state to another
location we would have to remove all of them in one sampling step from the
set of constraints M (see Algorithm 1). The probability of removing a single
formula with weight w from M is e−w. The probability of removing several
formulas with positive weights from the set of constraints is therefore very
low.

If we just want to solve our classification task by querying for the atLocation
predicate for a single object, given the truth values for all other atoms as evi-
dence, we can simply use exact inference. This is feasible because the number
of possible worlds in this case is the number of locations |L| as the truth values
for all ground atoms, except the ones relevant for the query, are given by the
evidence. To handle soft evidence during exact inference, we use soft counts,
as defined in Section 4.4.5.

5.3 Organizational Principles: Feature Importance
Measure

In addition to the classification task, we analyze the degree to which features are
capable of defining organizational principles at each particular location, fostering
an intuitive understanding of the principles (implicitly) represented in a classifier.
To this end, the conditional distributions of the attributes given a location as rep-
resented in a naive Bayesian classifier trained on the dataset D can be used. Within

51

5. Learning Organizational Principles

a given location L, there is certainly structure with respect to a particular feature
F if the conditional distribution of the feature given L exhibits little entropy. Thus,
the degree to which F defines an organizational principle at L can be computed as
the inverse normalized Shannon entropy,

IDF (L) := 1−
∑

f∈dom(F) PD(F =f |L) log(PD(F =f |L))
log(|dom(F)|)

(5.4)

where dom(F) is the domain of F , the numerator is the entropy of the distribu-
tion over dom(F) and the denominator is the maximum possible entropy (uniform
distribution over F ’s domain). We thus obtain an importance value in the interval
[0; 1], with low values representing low importance (high relative entropy) and high
values (low relative entropy) high importance.

In order to analyze the discriminative power of the various aggregated features,
we compute the Hellinger distance [29] HD

F ∈ [0; 1] between the distributions of a
feature F given the locations L1 and L2 as follows

HD
F (L1, L2) =

√
1−

∑
f∈dom(F)

√
PD(F =f | L1)PD(F =f | L2) (5.5)

As a measure of distribution dissimilarity, the Hellinger distance is an adequate
indicator for feature relevance [30]. We average Hellinger distances across all pairs
of locations (from the dataset’s set of locations LD) and define

H
D
(F) :=

(
|LD|
2

)−1 ∑
Li∈LD

∑
Lj∈LD,i<j

HD
F (Li, Lj) (5.6)

52

6 Evaluation

We tested our classifiers using two different sets of features on both of our datasets.
We first describe our experimental setup and then present and discuss the results.

6.1 Experimental Setup

We performed experiments for the datasets presented in Section 3 using the clas-
sifiers defined in Section 5.2. As the learning of reasonable complex Markov Logic
Networks turned out to be computationally too expensive in our kitchen scenario
(see the challenges described Section 5.2.6.5), we excluded the MLN models from
our evaluation.

For each classifier and dataset, we performed two experiments, one using a feature
vector containing just the maxWup and avgWup features and one using a feature
vector containing all the features in an effort to determine the power of the WUP
similarity when applied to various types of classifiers. In each experiment, we per-
formed leave-one-out cross-validation, i.e. for each class of objects, we removed all
of the objects belonging to the class from the kitchen for training and used our
classifiers to infer the location at which the object should be stored. A classifica-
tion result is considered correct if the predicted location is the one at which the
object was originally located. If a location contained only objects of a single class,
we skipped this class during leave-one-out crossvalidation as our classifiers would
have no training samples for that particular location.

6.2 Results and Discussion

We list the mean and standard deviation of the percentage of correctly classified
objects (accuracy) for our dataset of mockup kitchens and the accuracy values and
their mean for our real kitchen datasets in Table 6.1. The accuracy values for each
of the ten kitchens in our mockup kitchen dataset can be found in Table 6.2.

6. Evaluation

Table 6.1: Results: Accuracy for all classifiers on the ten mockup kitchen datasets
avgWup and maxWup all features
mean std mean std

max. avgWup 77.45% 20.85% — —
max. maxWup 87.52% 17.91% — —
DecisionTrees 86.61% 12.46% 88.12% 14.16%

Boosted DecisionTrees 87.68% 13.95% 89.50% 9.92%
SVM 77.46% 24.11% 89.49% 17.68%

NB Discrete 78.37% 15.64% 85.69% 15.56%
NB Continuous 69.97% 28.63% 82.61% 17.75%

NB Soft 42.16% 39.38% 82.32% 18.73%

Table 6.2: Results: Mean accuracy and standard deviation for all classifiers on both
real-world datasets

avgWup and maxWup all features
Dr1 Dr2 mean Dr1 Dr2 mean

max. avgWup 48.19% 70.24% 59.22% — — —
max. maxWup 72.29% 71.43% 71.86% — — —
DecisionTrees 84.94% 73.81% 79.37% 79.52% 69.05% 74.28%

Boosted DecisionTrees 84.94% 71.43% 78.18% 80.72% 69.05% 74.89%
SVM 57.23% 69.05% 63.14% 73.49% 76.19% 74.84%

NB Discrete 50.00% 50.00% 50.09% 57.83% 64.29% 61.06%
NB Continuous 41.57% 58.33% 49.95% 60.24% 63.10% 61.67%

NB Soft 13.86% 50.00% 31.93% 65.66% 59.52% 62.59%

54

6. Evaluation

Table 6.3: Results: Accuracy for all classifiers on each of the ten kitchens in our
mockup kitchen dataset

Dm1 Dm2 Dm3 Dm4 Dm5

max. avgWup WUP 81.82% 71.88% 75.76% 72.31% 77.27%
max. maxWup WUP 90.91% 92.19% 90.91% 76.92% 80.30%
DecisionTrees WUP 89.39% 89.06% 84.85% 83.08% 80.30%
DecisionTrees all 93.94% 87.50% 84.85% 81.54% 84.85%

Boosted DecisionTrees WUP 92.42% 90.63% 84.85% 84.62% 80.30%
Boosted DecisionTrees all 92.42% 90.63% 86.36% 87.69% 84.85%

SVM WUP 83.33% 79.69% 75.76% 63.08% 65.15%
SVM all 95.45% 85.94% 84.85% 89.23% 78.79%

NB Discrete WUP 84.85% 75.00% 84.85% 75.38% 69.70%
NB Discrete all 93.94% 89.06% 87.88% 78.46% 80.30%
NB Continous WUP 68.18% 60.94% 59.09% 58.46% 63.64%
NB Continous all 92.42% 70.31% 81.82% 84.62% 81.82%

NB Soft WUP 30.30% 37.50% 19.70% 49.23% 34.85%
NB Soft all 89.39% 75.00% 77.27% 83.08% 74.24%

Dm6 Dm7 Dm8 Dm9 Dm10

max. avgWup WUP 63.64% 84.85% 77.27% 84.85% 84.85%
max. maxWup WUP 95.45% 84.85% 87.88% 83.33% 92.42%
DecisionTrees WUP 93.94% 83.33% 84.85% 86.36% 90.91%
DecisionTrees all 95.45% 86.36% 87.88% 84.85% 93.94%

Boosted DecisionTrees WUP 95.45% 83.33% 86.36% 87.88% 90.91%
Boosted DecisionTrees all 93.94% 90.91% 87.88% 86.36% 93.94%

SVM WUP 78.79% 83.33% 74.24% 86.36% 84.85%
SVM all 98.48% 90.91% 89.39% 86.36% 95.45%

NB Discrete WUP 80.30% 77.27% 72.73% 80.30% 83.33%
NB Discrete all 81.82% 83.33% 81.82% 89.39% 90.91%
NB Continous WUP 81.82% 77.27% 68.18% 81.82% 80.30%
NB Continous all 80.30% 86.36% 81.82% 78.79% 87.88%

NB Soft WUP 37.88% 42.42% 46.97% 62.12% 60.61%
NB Soft all 93.94% 86.36% 81.82% 80.30% 81.82%

55

6. Evaluation

From these results, we conclude that the features based on WUP similarity are,
indeed, highly discriminative. Using the maximum maxWup similarity alone yields
an accuracy of 88% and 72% for the mock-up and real kitchens respectively. This
coincides with the human intuition that placing an object at the location where the
most similar object is located would be a reasonable strategy.

In our dataset containing the ten kitchen mockups, adding additional features and
using more sophisticated classifiers like SVMs, (boosted) decision trees and naive
Bayes yields only a small improvement, if any, with boosted decision trees using all
features yielding the best results (90% accuracy).

In the more complex scenario of the real kitchen dataset, however, (boosted) decision
trees and SVMs are able to improve upon the simple maxWup classifier by up to
8%. It is interesting to note that we get the best results with decision trees using
only the WUP similarities. The semantic similarity measure is sufficiently powerful
to obtain a correct classification rate of 79% in a real kitchen. In many ways, the
real-world environment is a more complex scenario, because object placement may
be influenced by additional spatial restrictions and convenience considerations (e.g.
highly similar objects are not always placed at a single location because no container
is large enough to hold them all). Such constraints were not considered in our
mockup experiments.

It is important to realize that a classification rate close to 100% may not be possible
in practice. First, a limited subset of objects in real-world environments may indeed
have been placed arbitrarily (for reasons such as lack of time or laziness), inducing
noise in the data. The underlying principles would therefore be neither possible nor
desirable for us to model. Second, several objects of one class could reasonably be
placed at more than one location, yet our evaluation considers only one of them as
correct. Given probabilistic models like our naive Bayesian classifiers, we could have
considered locations that received a probability higher than a certain threshold as
correct, but we did not follow this approach because the results would hardly have
been comparable to the other classifiers.

We now analyze the degree to which there is discernable organizational structure
at the various locations in a kitchen. In Figure 6.1, we present a plot showing
the importance measure defined in Section 5.3 for one of the kitchens from our
mockup dataset. A photograph of that kitchen layout is shown in Figure 3.1. We
reduced the importance values for our twelve avgWup, twelve maxWup, four purpose
and five purposeMeal features to four average values, one for each set of features.
The plot shows that all features except size are very prevalent at location 3. In
our dataset, this seems reasonable, because the location contains cooking pots and
pans, which are similar with respect to most aspects with the exception of size. At
location 2, feature importance values are low, because it represents the fridge, which

56

6. Evaluation

1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

avgWup
maxWup
mealRelevance
purpose
shape
size

Figure 6.1: Average feature importance (IDF (L)) for the 12 different locations (x-
axis) in the mockup kitchen dataset. High values indicate structure at
a particular location with respect to a particular group of features.

contains the greatest variety of different products. Looking at the prevalent feature
values at locations with high importance gives us some human-readable indication of
the organization principles, e.g. “FoodVessel, PhysicalDevice, PrincipalMeal, shape:
other” for location 3 or “FoodOrDrink, Breakfast” for location 4, which contains
breakfast cereals.

In order to analyze the discriminative power of the various features, we present in
Figure 6.2 and Figure 6.3 the Hellinger distances of feature distributions averaged
across all pairs of locations in our mockup kitchen dataset and our real-world kitchen
dataset respectively. We observe that, as expected, the WUP similarities have the
highest average Hellinger distances for both datasets, which means that among the
features we considered, they are best-suited for a discrimination between places.

57

6. Evaluation

avgWup maxWup mealRelevance purpose shape size
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Mean and standard deviation of the Hellinger distance-based importance
measure HD (defined for feature groups by taking the average) for the
ten kitchens in our mockup kitchen dataset

avgWup maxWup mealRelevance purpose shape size
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Mean and standard deviation of the Hellinger distance-based importance
measure HD (defined for feature groups by taking the average) for the
two kitchens in our real kitchens dataset

58

7 System Integration

We provide an open source implementation of our algorithm to solve the object
allocation task as an extension to the KnowRob [1] knowledge processing system.
We give an overview over the system in Figure 7.1. A robot performing a high-level
reasoning task can use an ask-and-tell interface, based on Prolog predicates, to
query information from the knowledge base. In our case here, this is the query for a
location where to place or search for a particular object. The necessary background
information for our algorithm is given by the KnowRob kitchen ontology, including
the germandeli data, and information about the locations of objects, gathered by
the robot’s perception system.

KnowRob: Prolog Knowledge Base

Best Object Location Inference

Robot Perception Kitchen Ontology

Similarity Computation

Object Locations

High-level Task

Classification

Germandeli
Ontology

Germandeli
Website

A
sk

 &
 T

el
l I

n
te

rf
ac

e

Figure 7.1: System overview: Integration of our algorithm in the KnowRob knowl-
edge processing system

7. System Integration

Figure 7.2: Lab kitchen (KnowRob 3d visualization), the inferred best storage
location for coffee filters is highlighted in blue

We provide several Prolog predicates for WUP similarity computation and, based
on that, predicates for the inference of the best location for a given object1. In
particular, we have two predicates, best_location_maxMaxWup(Object, Location)
and best_location_dtree(Object, Location), that compute the best location where
to place or search for an object applying our maximum maxWup classifier and
our decision tree classifier with the WUP similarity based feature set, respectively.
In our evaluation (see Section 6) we showed that these classifiers exhibited good
performance in all scenarios.

Within the KnowRob system, we can visualize the results by highlighting the
chosen location in a 3d representation of our lab kitchen. The following Prolog
query shows where to best place a package of coffee filters. The corresponding
object instance is named orgprinciples_demo:CoffeeFilter1, its class, defined within
the germandeli ontology, is germandeli:Kaffeefilter_Nr_4_80pc.

?− high l ight_best_locat ion_dtree (
orgpr inc ip les_demo : ’ Co f f e eF i l t e r 1 ’ , $Canvas) .

The visualization is presented in Figure 7.2. The console output lists all the objects
known to be located at the inferred location as well as their classes and the WUP
similarities to orgprinciples_demo:CoffeeFilter1:

Best l o c a t i o n : knowrob : Drawer7
Objects at l o c a t i o n knowrob : Drawer7 :
WUP s i m i l a r i t y : ob j e c t (c l a s s)

1Our implementation is split over two ROS (Robot Operating System, http://www.ros.org/)
packages. We provide Prolog predicates for WUP similarity computation in the
ias_prolog_addons package and Prolog predicates to infer and visualize object locations in
the comp_orgprinciples package

60

7. System Integration

0 . 70588 : orgpr inc ip les_demo : ChocolateDrink1
(germandel i : Milka_Schoko_Drink_refil l_500g)

0 . 87500 : orgpr inc ip les_demo : CoffeGround1
(germandel i : Dallmayr_Classic_Ground_Coffee_250g)

0 . 87500 : orgpr inc ip les_demo : CoffeeGround2
(germandel i : Dallmayr_Extra_Spezial_Ground_500g)

0 . 75000 : orgpr inc ip les_demo : EspressoBeans1
(germandel i : illy_Espresso_Whole_Beans_88_oz)

0 . 70588 : orgpr inc ip les_demo : Sugar1
(germandel i : Nordzucker_Brauner_Teezucker_500g)

0 . 66667 : orgpr inc ip les_demo : Tea1
(germandel i : Teekanne_Rotbusch_Tee_20_Bags)

0 . 66667 : orgpr inc ip les_demo : Tea2
(germandel i : Teekanne_Rotbusch_Tee_Vanille_20_Bags)

All of these objects exhibit a high similarity to coffee filters because they are all
usually used to prepare (hot) drinks, including coffee.

We now want to position our algorithm in the context of a higher-level task with
the help of our aforementioned examplary scenario. Therefore assume someone (or
some robot) just came home from shopping in a supermarket, places a basket full
of newly bought items on the kitchen table and tells our assistive kitchen robot to
“put the things away”, i.e. to place them at reasonable locations within the kitchen.
This may result in the following steps for the robot:

1. Empty shopping basket on the table to be able to separate the objects

2. Perceive and segment objects

3. Match objects with object classes in knowledge base
In case an object is unknown, this can require to gather additional infor-
mation, for example from the internet by parsing online shop websites (e.g.
germandeli.com)

4. Use general knowledge about kitchens to handle certain types of objects
This knowledge can be represented by hardcoded rules or learned by ap-
proaches similar to the ones presented in our related work (see Section 1.4).
Such hard rules could for example require to place frozen objects into the
freezer. General knowledge about room types could be used to infer which of
the objects belong into the kitchen at all.

5. Use our new algorithm to infer where to best place the (remaining) kitchen
objects

61

7. System Integration

The result will be specific to this particular kitchen and the organizational
principles implicitly imposed by its owner through previous object placements.
Our algorithm uses similarities to other objects that are already located in
the kitchen to infer the best location. The robot therefore needs to aquire
information about the other locations of the objects in the kitchen once in a
while (or alternatively observe and remember all changes). This information
does not need to be 100% correct or up to date though, because organizational
principles are usually not changed very often.

6. For each object:

a) Pick up the object

b) Move to inferred location, open container if necessary

c) Search for free space inside location, if there is not enough free space,
infer a new location (→ Step 5)

d) Place object inside location, close container if necessary

62

8 Conclusion and Future Work

In this work, we have addressed the important task of identifying structure in human
living environments – a task that will become increasingly relevant as robots begin to
assume their role as household assistants under real-world conditions. We considered
the task of allocating objects to likely storage locations, which can reasonably be
viewed as a classification task, and analyzed the suitability of various classifiers for
this task. Our thesis that organizational principles can be viewed as manifestations
of clusterings that are governed by similarity was confirmed in our experiments,
and the semantic similarity measure that we proposed based on WUP similarity
proved to be highly informative. Average classification rates of at least 79% could
be reached even in real-world scenarios, and standard classifiers such as support
vector machines and decision trees proved to be adequate.

Naive Bayesian classifiers performed less reliably, but we could exploit their proba-
bilistic semantics to gain additional information about the structure of the problem
and the relevance of our various features. Markov Logic Networks, although in the-
ory our most powerful model and capable of handling additional types of features
and queries, turned out to be computationally too extensive to be applicable on
our datasets. We developed the foundations of new soft evidence weight learning
methods, but to apply these methods to handle non-trivial scenarios, further opti-
mizations to reduce their computational complexity will be necessary.

We provide an open source implementation of the best performing variant of our
algorithm, integrated into the KnowRob knowledge processing system. We thereby
provide Prolog predicates to infer the best location where to place or search for
objects, which can easily be incorporated in higher-level reasoning tasks.

In future work, we intend to include more features that will consider, for example,
spatial relations between the containers in an environment and more fine-grained
representation of locations, such that we can model the concrete spatial configura-
tion within specific locations. Furthermore, we plan to address the problem of trans-
ferring our approach to the learning of organizational principles in other everyday
environments. We are currently working on the integration of our models in a robotic
system that is to solve complex everyday tasks within a kitchen environment.

Bibliography

[1] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for Au-
tonomous Personal Robots,” in IEEE/RSJ International Conference on In-
telligent RObots and Systems., 2009.

[2] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, “An introduction to
the syntax and content of Cyc,” Proceedings of the 2006 AAAI Spring Sympo-
sium on Formalizing and Compiling Background Knowledge and Its Applica-
tions to Knowledge Representation and Question Answering, pp. 44–49, 2006.

[3] M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, “Web-enabled Robots –
Robots that use the Web as an Information Resource,” Robotics & Automation
Magazine, vol. 18, no. 2, 2011, accepted for publication.

[4] D. Jain, P. Maier, and G. Wylezich, “Markov Logic as a Modelling Language for
Weighted Constraint Satisfaction Problems,” in Eighth International Workshop
on Constraint Modelling and Reformulation. In conjunction with CP2009.,
2009.

[5] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-Madrigal,
and J. González, “Multi-hierarchical semantic maps for mobile robotics,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
Edmonton, CA, 2005, pp. 3492–3497.

[6] K. Sjöö, H. Zender, P. Jensfelt, G.-J. M. Kruijff, A. Pronobis, N. Hawes, and
M. Brenner, “The explorer system,” in Cognitive Systems, H. I. Christensen,
G.-J. M. Kruijff, and J. L. Wyatt, Eds. Springer, 2010.

[7] A. Bouguerra, L. Karlsson, and A. Saffiotti, “Handling uncertainty in semantic-
knowledge based execution monitoring,” in IROS. IEEE, 2007, pp. 437–443.

[8] H. Zender, O. Martínez Mozos, P. Jensfelt, G. Kruijff, and W. Burgard, “Con-
ceptual spatial representations for indoor mobile robots,” Robotics and Au-
tonomous Systems, 2008.

Bibliography

[9] S. Vasudevan, S. Gächter, V. Nguyen, and R. Siegwart, “Cognitive maps for
mobile robots - an object based approach,” Robotics and Autonomous Systems,
vol. 55, no. 5, pp. 359–371, 2007.

[10] S. Vasudevan and R. Siegwart, “Bayesian space conceptualization and place
classification for semantic maps in mobile robotics,” Robotics and Autonomous
Systems, vol. 56, no. 6, pp. 522–537, 2008.

[11] J. Sinapov and A. Stoytchev, “The odd one out task: Toward an intelligence
test for robots,” in IEEE 9th International Conference on Development and
Learning (ICDL), 2010, pp. 126 –131.

[12] D. D. Fu, K. J. Hammond, and M. J. Swain, “Action and perception in man-
made environments,” in Proc. of the 14th IJCAI, Montreal, Canada, 1995, pp.
464–469.

[13] N. J. Smith, Vagueness and Degrees of Truth. Oxford University Press, 2008.

[14] M. Broecheler, L. Mihalkova, and L. Getoor, “Probabilistic similarity logic,” in
Conference on Uncertainty in Artificial Intelligence, 2010.

[15] D. Jain and M. Beetz, “Soft Evidential Update via Markov Chain Monte Carlo
Inference,” in 33rd Annual German Conference on Artificial Intelligence (KI
2010), 2010.

[16] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI-01 workshop
on "Empirical Methods in AI".

[17] G. H. John and P. Langley, “Estimating continuous distributions in Bayesian
classifiers,” in Proc. 11th Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 1995, pp. 338–345.

[18] R. R. Bouckaert, “Naive bayes classifiers that perform well with continuous vari-
ables,” in Australian Conference on Artificial Intelligence, ser. Lecture Notes
in Computer Science, G. I. Webb and X. Yu, Eds., vol. 3339. Springer, 2004,
pp. 1089–1094.

[19] M. Richardson and P. Domingos, “Markov logic networks,” Machine Learning,
vol. 62, no. 1-2, pp. 107–136, 2006.

[20] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, and P. Singla, “Markov
logic,” in Probabilistic Inductive Logic Programming, ser. Lecture Notes in Com-

65

Bibliography

puter Science, L. D. Raedt, P. Frasconi, K. Kersting, and S. Muggleton, Eds.,
vol. 4911. Springer, 2008, pp. 92–117.

[21] D. Jain, “Applying markov logic to the acquisition of and reasoning about
action models,” Diploma thesis in Computer Science at the Technische Univer-
sität München, 2007.

[22] V. Gogate, W. Webb, and P. Domingos, “Learning efficient markov networks,”
in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 748–756.

[23] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 1995.

[24] W. Wei and B. Selman, “A new approach to model counting,” in International
Conference on Theory and Applications of Satisfiability Testing (SAT), ser.
Lecture Notes in Computer Science, F. Bacchus and T. Walsh, Eds., vol. 3569.
Springer, 2005, pp. 324–339.

[25] D. Lowd and P. Domingos, “Efficient weight learning for markov logic net-
works,” in PKDD, ser. Lecture Notes in Computer Science, J. N. Kok, J. Ko-
ronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, and A. Skowron, Eds.,
vol. 4702. Springer, 2007, pp. 200–211.

[26] S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner, H. Poon, D. Lowd,
J. Wang, and A. Nath, “The Alchemy System for Statistical Relational AI,”
http://alchemy.cs.washington.edu/, 2010.

[27] Z. Wu and M. S. Palmer, “Verb semantics and lexical selection,” in ACL, 1994,
pp. 133–138.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software: an update,” SIGKDD Explorations, vol. 11,
no. 1, pp. 10–18, 2009.

[29] L. L. Cam and G. L. Yang, Asymptotics in Statistics – Some Basic Concepts.
Berlin: Springer, 1990.

[30] W. Li and X. Jia, “Feature selection algorithm based on hellinger distance,”
Journal of Computer Applications, vol. 30, no. 6, pp. 1530–1532, 2010.

66

http://alchemy.cs.washington.edu/

	Table of Contents
	List of Figures
	Introduction
	Organizational Structure in Kitchen Environments
	Ontologies
	Contributions
	Related Work
	Overview

	Organizational Principles
	Datasets
	Kitchen Mockups
	Real Kitchens

	Probabilistic Modeling Methods
	Probabilities and Degrees of Truth
	Soft Evidence
	Naive Bayesian Model
	Discretization
	Approximation as Gaussian
	Soft Evidence

	Markov Logic Networks (MLNs)
	Markov Networks
	Definition and Semantics
	Inference
	Exact Inference
	Approximate Inference (MC-SAT)
	Inference with Soft Evidence

	Parameter Learning with Hard Evidence
	Log-Likelihood
	Pseudo-Log-Likelihood
	Computation of Formula Frequencies

	Parameter Learning with Soft Evidence
	Log-Likelihood with Weighting of Formulas (LL-ISE)
	Pseudo-Log-Likelihood with Weighting of Formulas (PLL-ISE)
	Log-Likelihood with Sampling and Weighting of Formulas (SLL-ISE)
	Log-Likelihood with Double Sampling and Weighting of Worlds (DSLL-WW)
	Further Approaches

	Comparison
	Example and Discussion

	Learning Organizational Principles
	Features
	Classifiers
	Maximum WUP Similarity
	Decision Trees
	Boosted Decision Trees
	Support Vector Machines (SVM)
	Naive Bayes
	Markov Logic Networks
	MLN Using Similarity to One Location
	MLN Using Similarity to All Locations
	MLN Using Pairwise Similarities between Objects
	Further Modeling Techniques
	Challenges

	Organizational Principles: Feature Importance Measure

	Evaluation
	Experimental Setup
	Results and Discussion

	System Integration
	Conclusion and Future Work
	Bibliography

